Comune di Concesio

Piazza Paolo VI, 1 25062 Concesio (BS)

PROGETTO/Project

Lavori di riqualificazione sismica ed energetica della scuola secondaria di l° Grado S. Andrea nel comune di Concesio (BS) - Codice NUTS: ITC47

cat. Perizia di Variante

Ref. arch. Flavia Gusberti

OIG 9453641F55

CUP

D46J20000550001

ProgettoB20 srl società benefit

Cap. Soc. € 30.000,00 i.v. - C.F. e P.IVA 04068290982 www.progettob20.it

Direttori Tecnici:

Pietro Brianza ingegnere Luca Pietta architetto

Sede legale:

25128 BRESCIA - via Bredina, 2c/d t. +39 030 383398 REA BS - 585894

RIFERIMENTO COMMESSA

REFERENTI:

Pietro Brianza Ingegnere Marco Bigni Ingegnere Stefano Rabaioli Ingegnere

CONSULENZE SPECIALISTICHE

ELABORATO/Document

Relazione tecnica Ex Legge 10 di variante

ORDER CATEGORY SECTION NUMBER

W23-238 VAR GEN B

 N
 SUBJECT
 DATE
 D
 C

 Rev.
 00
 Emissione ufficiale
 31/03/2025
 S.R.
 P.B.

File Elaborato GEN B

Comune di Concesio

Piazza Paolo VI, 1 25062 Concesio (BS)

PROGETTO/Project

Lavori di riqualificazione sismica ed energetica della scuola secondaria di lo Grado S. Andrea nel comune di Concesio (BS) - Codice NUTS: ITC47

Pratica Conto Termico GSE

Ref. arch, Flavia Gusberti CIG 9453641F55 D46J20000550001

ProgettoB20 srl - Società di Ingegneria Cap. Soc. € 30.000,00 i.v. - C.F. e P.IVA 04068290982 www.progettob20.it

Direttori Tecnici:

Pietro Brianza ingegnere Luca Pietta architetto

Sede legale:

25128 BRESCIA - via Bredina, 2c/d t. +39 030 383398 REA BS - 585894

PRATICA CONTO TERMICO GSE - RIFERIMENTO COMMESSA

REFERENTI:

Pietro Brianza Ingegnere Stefano Rabaioli Ingegnere Tatiana Bovi Ingegnere

ProgettoB20 srl Via Bredina 2 C/D - 25128 BRESCIA - t. 030383398 Cap. Soc. € 30,000,00 i.v. www.progettob20.if CF e P. Iva 14068290982 - REA BS 585894

CONSULENZE SPECIALISTICHE

ESPERTO IN GESTIONE DELL'ENERGIA

Marco Roncelli Ingegnere - N°0001-SI-EGE-2023 (FIRE SECEM) - N°0002-SC-EGE-2023 (FIRE SECEM).

ELABORATO/Document

Relazione tecnica ex legge 10 Post intervento

_	N	SUBJECT			DATE	D	С
					•	•	
Scale			W23-238	GSE	GEN	E	3
			ORDER	CATEGORY	SECTION	NUN	MBER

Rev. Emissione Integrazione 04/02/2025 S.R

Rif: GEN B - relazione tecnica ex legge 10 post

Comune di Concesio- (BS)

RELAZIONE TECNICA

Attestante la rispondenza alle prescrizioni in materia di contenimento del consumo energetico degli edifici

EDIFICIO	Via Carrobbio 5 - Concesio (BS)
PROGETTISTA	Ing. Pietro Brianza
DATA	04/02/2025

RELAZIONE TECNICA DI CUI AL PUNTO 4.8 DELL'ALLEGATO 1 DEL DECRETO ATTUATIVO DELLA DGR 3868 DEL 17.7.2015 e s.m.i.

Nuove costruzioni, ristrutturazioni importanti di primo livello, edifici ad energia quasi zero

Un edificio esistente è sottoposto a ristrutturazione importante di primo livello quando l'intervento ricade nelle tipologie definite nell'allegato A del decreto attuativo della DGR 3868 del 17.7.2015.

Il seguente schema di relazione tecnica contiene le informazioni minime necessarie per accertare l'osservanza delle norme vigenti da parte degli organismi pubblici competenti. Lo schema di relazione tecnica si riferisce all'applicazione integrale del decreto attuativo DGR 3868 del 17.7.2015.

1 INFORMAZIONI GENERALI				
Comune di Concesio		Provincia	BS	
Progetto per la realizzazione di				
Ristrutturazione importante di primo livello dell'edificio				
X Edificio pubblico				
Edificio ad uso pubblico				
Sito in Via Carrobbio 5				
Unità	Sezione	Foglio	Particella	Subalterno
Scuola S.Andrea Concesio		33	251	2
Richiesta Permesso di Costruire - Variante		Del	12/01/2024	
Classificazione dell'edificio (o del complesso di edifici) in base del decreto attuativo della DGR 3868 del 17.7.2015; per edifici differenti, specificare le diverse categorie) E.7 attività scolastiche a tutti i livelli e assimilabili				
Numero delle unità immobiliari 1				
Soggetti coinvolti				
Committente	Comun	e di Concesi	o (Spett.)	
Progettista degli impianti termici	Ing. Ma	rco Cristini		
Progettista dell'isolamento termico dell'edificio	Ing. Ma	Ing. Marco Cristini		
Progettista del sistema di ricambio dell'aria dell'edificio	Ing. Ma	Ing. Marco Cristini		
Direttore dei lavori per l'isolamento termico dell'edificio	Ing. Pie	tro Brianza		
Direttore dei lavori per la realizzazione degli impianti termici				
Direttore dei lavori del sistema di ricambio dell'aria dell'edificio				
Progettista dei sistemi di illuminazione dell'edificio				
Direttore dei lavori dei sistemi di illuminazione dell'edificio				
Tecnico incaricato per la redazione dell'APE	Da defi	nirsi		
2 FATTORI TIPOLOGICI DELL'EDIFICIO (o del complesso	o di edific	i)		

Gli elementi tipologici da fornire, al solo scopo di supportare la presente relazione tecnica, sono i primi tre allegati obbligatori di cui al punto 8 della presente relazione.

3 PARAMETRI CLIMATICI DELLA LOCALITÀ

Gradi giorno (della zona d'insediamento, determinati in base al DPR 412/93)

Temperatura minima di progetto (dell'aria esterna norma UNI 5364 e succ agg.)

Temperatura massima estiva di progetto dell'aria esterna secondo norma

2521 GG

265,8 K

304,6 K

4 DATI TECNICI E COSTRUTTIVI DELL'EDIFICIO (O DEL COMPLESSO DI EDIFICI) E DELLE RELATIVE STRUTTURE

Climatizzazione invernale

Unità immobiliare	S [<i>m</i> ²]	V [m³]	S/V	Su [<i>m</i> ²]
Scuola S. Andrea Concesio	9 188,13	22 020,05	0,42	4 650,78

S Superficie disperdente che delimita il volume climatizzato

Su superficie utile climatizzata dell'edificio

Unità immobiliare	Zona climatizzata	Tinv [°C]	φinv [%]
Scuola S.Andrea Concesio	04 Zona Scuola Media PT	20,0	50
Scuola S.Andrea Concesio	01 Zona Auditorium	20,0	50
Scuola S.Andrea Concesio	03 Zona Scuola Elementare PT	20,0	50
Scuola S.Andrea Concesio	07 Spogliatoi Palestra	20,0	50
Scuola S.Andrea Concesio	06 Zona Scuola Media P1	20,0	50
Scuola S.Andrea Concesio	05 Zona Scuola Elementare P1	20,0	50
Scuola S.Andrea Concesio	02 Zona Mensa	20,0	50
Scuola S.Andrea Concesio	08 Palestra attività	18,0	50
Scuola S.Andrea Concesio	09 Servizi Auditorium	20,0	50

Tinv Valore di progetto della temperatura interna invernale φinv valore di progetto dell'umidità relativa interna per la climatizzazione invernale

Unità immobiliare	Metodo contabilizzazione
Scuola S.Andrea Concesio	Non contabilizzato

Climatizzazione estiva

Unità immobiliare	S [m²]	V [m³]	Su [m²]
Scuola S.Andrea Concesio	7 143,71	16 522,02	3 944,73

S Superficie disperdente che delimita il volume climatizzato

V Volume delle parti di edificio climatizzate al lordo delle strutture che li delimitano

Su Superficie utile climatizzata dell'edificio

V Volume delle parti di edificio climatizzate al lordo delle strutture che li delimitano

S/V rapporto tra superficie disperdente e volume lordi o fattore di forma dell'edificio

Unità immobiliare	Zona climatizzata	Test [°C]	φest [%]
Scuola S.Andrea Concesio	04 Zona Scuola Media PT	26,0	50
Scuola S.Andrea Concesio	01 Zona Auditorium	26,0	50
Scuola S.Andrea Concesio	03 Zona Scuola Elementare PT	26,0	50
Scuola S.Andrea Concesio	07 Spogliatoi Palestra	24,0	50
Scuola S.Andrea Concesio	06 Zona Scuola Media P1	26,0	50
Scuola S.Andrea Concesio	05 Zona Scuola Elementare P1	26,0	50
Scuola S.Andrea Concesio	02 Zona Mensa	26,0	50
Scuola S.Andrea Concesio	08 Palestra attività	26,0	50
Scuola S.Andrea Concesio	09 Servizi Auditorium	26,0	50

Test Valore di progetto della temperatura interna estiva φest Valore di progetto dell'umidità relativa interna estiva

Unità immobiliare	Metodo		
Scuola S.Andrea Concesio	Non contabilizzato		

Scuola S.Andrea Concesio	Non contabilizzato		
Informazioni generali e prescriz	ioni		
Presenza di reti di teleriscaldamer	nto/raffreddamento a meno di 1000 m	[x] Si	[] No
Se "sì" descrivere le opere edili ed state predisposte opere inserire la	impiantistiche previste necessarie al o motivazione:	collegamen	to alle reti. Se non sono
	alla rete del teleriscaldamento cittadino nvariato l'impianto di climatizzazione in tra.		stente SOLO a servizio
Livello di automazione per il contro termici (BACS), classe (min = clas	ollo, la regolazione e la gestione delle t se B norma UNI EN 15232):	ecnologie o	dell'edificio e degli impianti
В			
Adozione di materiali ad elevata r	flettenza solare per le coperture:	[x] Si []	No
Se "sì" descrizione e caratteristich	e principali:		
L'intervento prevede la demolizion pannello sandwich con adeguati li	e della copertura esistente e la realizz velli di riflettanza.	azione di u	na nuova copertura in
Valore di riflettenza solare	0,75 > 0,65 per coperture piane	e	
Valore di riflettenza solare	0 > 0.30 per coperture a falo	da	
Se "no" riportare le ragioni tecnico	-economiche che hanno portato al non	utilizzo de	i materiali riflettenti
Adozione di tecnologie di climatizz	azione passiva per le coperture	[]Si [x]	No
Se "no" riportare le ragioni tecnico	-economiche che hanno portato al non	utilizzo:	

Adozione di misuratori d'energia (Energy Meter) [] Si [x] No

nuova copertura sarà realizzata con pannello sandwich con trasmittanza <0.8 W/m2K.

Per garantire un adeguato livello di confort nella stagione estiva, è stata prevista la coibentazione dell'ultimo solaio a contatto con gli ambienti climatizzati con uno strato di Neopor dello spessore di 200 mm. Inoltre, sono state previste delle aperture tra solaio e copertura sufficienti a garantire il ricircolo dell'aria nel sottotetto. La

Se "sì" descrizione e caratteristiche principali					
Adozione di sistemi di contabilizzazione diretta del calore [] Si [x	[] No				
Adozione di sistemi di contabilizzazione diretta del freddo [] Si [x	ː] No				
Adozione di sistemi di contabilizzazione diretta dell'ACS [] Si [x	ː] No				
Se "no" riportare le ragioni tecnico-economiche che hanno portato al non contabilizzazione è stato utilizzato: Impianto autonomo.	utilizzo	e definir	e quale	e siste	ma di
Utilizzazione di fonti di energia rinnovabili per la copertura dei consumi di raffrescamento di cui ai punti 6.13 e 6.15 dell'Allegato del decreto attuativi Produzione di energia termica Indicare la % di copertura tramite il ricorso ad energia prodotta da impian consumi previsti per: Acqua Calda Sanitaria 80,5 %	o della	DGR 38	68 del	17.7.2	
Climatizzazione invernale, Acqua Calda Sanitaria, Climatizzazione estiva	65	,5 %			
Produzione di energia elettrica Indicare la potenza elettrica degli impianti alimentati da fonti rinnovabili: Superficie in pianta dell'edificio a livello del terreno S 3 506,00 m² Potenza Elettrica limite 94,66 kW		-			
Verifiche di legge secondo Regione Lombardia D.G.R. 3868 - 18546/2019 - Intero edificio					
Valori limite di riferimento: Limiti relativi alla Regione Lombardia DDUO 18546 del 2019 - anno 2021					
Tipo di intervento: Ristrutturazione importante di primo livello - NZEB					
The distriction institutional infortance disposition in the contract of printering in the contract of the cont					
RIASSUNTO					
RIASSUNTO	Esito	Verificato			
RIASSUNTO Dlgs 199/2021 rinnovabili	Esito	Verificato SI			
RIASSUNTO					
RIASSUNTO Dlgs 199/2021 rinnovabili					
RIASSUNTO DIgs 199/2021 rinnovabili Verifica superata NZEB					
RIASSUNTO Dlgs 199/2021 rinnovabili					
RIASSUNTO DIgs 199/2021 rinnovabili Verifica superata NZEB	1/1				
RIASSUNTO Digs 199/2021 rinnovabili Verifica superata NZEB DETTAGLIO DELLE VERIFICHE DI LEGGE - Intero edificio	1/1		Limite	Um	Verificato

Descrizione e potenza degli impianti alimentati da fonti rinnovabili (specificare anche le caratteristiche e l'ubicazione (comune, indirizzo, foglio e particella catastale) di eventuali impianti per cui ci si avvale della possibilità prevista al punto 2 della DGR 2480 del 18.11.2019), allegando l'atto di assenso del legittimo proprietario o dell'avente titolo

Pannelli fotovoltaici

Adozione sistemi di regolazione automatica della temperatura ambiente singoli locali o nelle zone termiche servite da impianti di climatizzazione invernale

ſχ] Si	[]	No

Adozione sistemi di compensazione climatica nella regolazione automatica della temperatura ambiente singoli locali o nelle zone termiche servite da impianti di climatizzazione invernale:

[x] Si [] No

Se "no" documentare le ragioni tecniche che hanno portato alla non utilizzazione

Valutazione sull'efficacia dei sistemi schermanti delle superfici vetrate sia esterni che interni presenti: vedi allegati alla relazione tecnica

Verifiche di cui al punto 6.16 lettera b) dell'Allegato 1 decreto attuativo della DGR 3868 del 17.7.2015.

Tutte le pareti opache verticali ad eccezione di quelle comprese nel quadrante nord-ovest/nord/nord-est:

Valore di Massa superficiale

Elemento edilizio	M Sup [kg/m²]	Limite [kg/m²]	Verifica
-	-	-	-

Valore del modulo della trasmittanza termica periodica YIE

Elemento edilizio	YIE [W/m²K]	Limite [W/m²K]	Verifica
-	-	-	-

Verifiche di cui al punto 6.16 lettera c) dell'Allegato 1 del decreto attuativo della DGR 3868 del 17.7.2015.

5 DATI RELATIVI AGLI IMPIANTI

5.1 Impianti termici

Impianto tecnologico destinato ai servizi di climatizzazione invernale e/o estiva e/o produzione di acqua calda sanitaria, indipendentemente dal vettore energetico utilizzato.

a. Descrizione dell'impianto

Tipologia

Impianto di climatizzazione invernale ed estiva suddiviso in N°7 zone termiche differenti

Sistemi di generazione

N° 6 pompe di calore elettriche aria-aria per climatizzazione dell'edificio composto da: Auditorium, Mensa, Scuola Primaria e Scuola Secondaria di primo grado.

Scambiatore in C.T. connesso alla rete del teleriscaldamento per la sola zona destinata a palestra.

Sistemi di termoregolazione

Regolazione climatica e singolo ambiente.

Sistemi di contabilizzazione dell'energia termica

Contabilizzazione diretta mediante contatore unico di energia termica.

Sistemi di distribuzione del vettore termico
Tubazioni pre-isolate per gas refrigerante R-410 A
Sistemi di ventilazione forzata
N°4 UTA con recuperatore di calore a servizio dell'impianto di ventilazione meccanica controllata. L'impianto di ventilazione verrà realizzato per tutti i locali ad esclusione della Palestra.
Sistemi di accumulo termico

Sistemi di produzione dell'acqua calda sanitaria
Sono presenti N°4 scaldacqua in pompa di calore aria/acqua per la produzione di acqua calda sanitaria.
Sistemi di distribuzione dell'acqua calda sanitaria
Tubazioni in materiale metal-plastico multistrato isolate termicamente.
Trattamento di condizionamento chimico per l'acqua (norma UNI 8065) [] Si [x] No
Durezza dell'acqua di alimentazione dei generatori di calore 35 °F
Filtro di sicurezza [x] Si [] No
b. Specifiche dei generatori di energia
Installazione di un contatore del volume di acqua calda sanitaria [] Si [x] No
Installazione di un contatore del volume di acqua di reintegro [] Si [x] No
POMPA DI CALORE
Mitsubishi Electric - PUHY-P350YNW-A
Pompa di calore X elettrica a gas
Tipo di pompa di calore (ambiente esterno/interno) Aria esterna - Aria
Lato esterno (specificare aria/acqua/suolo, sonde orizzontali/suolo, sonde verticali/altro): Aria
Fluido lato utenze (specificare aria/acqua/altro) Aria
Potenza elettrica assorbita 0,00 W

Potenza termica utile riscaldamento [kW]

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo caldo [°C]								
	20	-	-		-	-	-		
-7,0	34,280	-	-	-	-	-	-		
2,0	43,050	-	-	-	-	-	-		
7,0	45,000	-	-	-	-	-	-		
12,0	45,000	-	-	-	-	-	-		

Coefficiente di prestazione (COP)

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo caldo [°C]						
	20	-	-	-	-	-	-
-7,0	3,560	-	-	-	-	-	-
2,0	4,000	-	-	-	-	-	-
7,0	4,280	-	-	-	-	-	-
12,0	4,910	-	-	_	-	-	-

POMPA DI CALORE

Mitsubishi Electric - PUHY-P350YNW-A				
Pompa di calore X	elettrica	a gas		
Tipo di pompa di calore (ambiente esterno/in	iterno)	Aria esterna - Aria		
Lato esterno (specificare aria/acqua/suolo, s	onde orizz	ontali/suolo, sonde verticali/altro):	Aria	
Fluido lato utenze (specificare aria/acqua/alt	ro) Aria	a		
Potenza elettrica assorbita	0,0	0 W		

Potenza termica utile riscaldamento [kW]

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo caldo [°C]							
	20	-	-	-	-	-	-	
-7,0	34,280	-	-	-	-	-	-	
2,0	43,050	-	-	-	-	-	-	
7,0	45,000	-	-	-	-	-	-	
12,0	45,000	-	-	-	-	-	-	

Coefficiente di prestazione (COP)

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo caldo [°C]							
	20	-	_	_	_	_	_	
-7,0	3,560	-	-	-	-	-	-	
2,0	4,000	-	-	-	-	-	-	
7,0	4,280	-	-	-	-	-	-	
12,0	4,910	-	-	-	-	-	-	

POMPA DI CALORE

Mitsubishi Electric - PUHY-P350YNW-	A					
Pompa di calore	X elettrica	a	a gas			
Tipo di pompa di calore (ambiente este	erno/interno))	Aria esterna - Aria			
Lato esterno (specificare aria/acqua/su	ıolo, sonde d	orizzon	tali/suolo, sonde verti	cali/altro):	Aria	
Fluido lato utenze (specificare aria/acq	ua/altro)	Aria				
Potenza elettrica assorbita		0,00 V	V			

Potenza termica utile riscaldamento [kW]

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo calo	Tpozzo caldo [°C]								
	20	-	-	-	-	-	-			
-7,0	34,280	-	-	-	-	-	_			
2,0	43,050	-	-	-	-	-	-			
7,0	45,000	-	-	-	-	-	-			
12,0	45,000	-	-	-	-	-	-			

Coefficiente di prestazione (COP)

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

[°C]	Tpozzo cal	do [°C]					
	T			I	1	ı	1
	20	-	-	-	-	-	-
-7,0	3,560	-	-	-	-	-	-
2,0	4,000	-	-	_	-	-	-
7,0	4,280	-	-	-	-	-	-
12,0	4,910	-	-	-	-	-	-

POMPA DI CALORE

Mitsubishi Elec	ctric - PUHY-F	200YNW-A	-				
Pompa di calo	re	X	elettrica		a gas		
Tipo di pompa	di calore (am	biente esterno/	interno)	Aria estern	a - Aria		
Lato esterno (s	specificare ari	a/acqua/suolo,	sonde orizzo	ontali/suolo,	sonde verticali	/altro): Aria	1
Fluido lato uter	nze (specifica	re aria/acqua/a	ıltro) Aria	a			
Potenza elettri	ca assorbita		0,00	O W			
Potenza termi	ica utile risca	aldamento [kW	⁄]				
Il dato è in funz	zione delle ter	mperature di po	ozzo caldo e	sorgente fre	dda		
Ts,fredda [°C]	Tpozzo calo						
	20	_	_			_	_
-7,0	19,040	-	-			-	-
2,0	23,920	-	-	,		-	-
7,0	25,000	-	-		-	-	-
12,0	25,000	-	-		-	-	-
Il dato è in funz Ts,fredda [°C]	zione delle ter Tpozzo calc	mperature di po do [°C]	ozzo caldo e	sorgente fre	dda		
	20						
-7,0	4,530			<u>-</u>	_	<u>-</u>	<u>-</u>
2,0	5,110	_	_		_	_	
7,0	5,460	_	_	_	_	_	_
12,0	6,260	-	-	-	-	-	-
POMPA DI CA		2700YSNW-A -					
Pompa di calo	re	X	elettrica		a gas		
Tipo di pompa	di calore (am	biente esterno/	interno)	Aria estern	a - Aria		
Lato esterno (s	specificare ari	a/acqua/suolo,	sonde orizzo	ontali/suolo,	sonde verticali	/altro): Aria	1
Fluido lato uter	nze (specifica	re aria/acqua/a	ıltro) Aria	a			
Potenza elettrio	ca assorbita		0.00	n W			

Potenza termica utile riscaldamento [kW]

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo calc	lo [°C]		J			
	20	-	-	-	-	-	_
-7,0	72,360	-	-	-	-	-	-
2,0	90,880	-	-	-	-	-	-
7,0	95,000	-	-	-	-	-	-
12,0	95,000	-	-	-	-	-	-

Coefficiente di prestazione (COP)

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo cal	do [°C]		Ţ.			
	20	-	-	-	-	-	-
-7,0	3,210	-	-	-	-	-	-
2,0	3,620	-	-	-	-	-	-
7,0	3,870	_	-	-	_	-	-
12,0	4,440	-	-	-	-	-	-

POMPA DI CALORE

Mitsubishi Electric - PUHY-P800YSNW-A							
Pompa di calore X elettri	ica a gas						
Tipo di pompa di calore (ambiente esterno/interno	o) Aria esterna - Aria						
Lato esterno (specificare aria/acqua/suolo, sonde	e orizzontali/suolo, sonde verticali/altro): Aria	_					
Fluido lato utenze (specificare aria/acqua/altro)	Aria						
Potenza elettrica assorbita	0,00 W						

Potenza termica utile riscaldamento [kW]

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo calo	do [°C]					
	20	-	-	-	-	-	-
-7,0	76,170	-	-	-	-	-	-
2,0	95,670	-	-	-	-	-	-
7,0	100,000	-	-	-	-	-	-
12,0	100,000	-	_	-	-	-	-

Coefficiente di prestazione (COP)

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo cal	do [°C]					
	20	-	-	-	-	-	-
-7,0	3,400	-	-	-	-	-	-
2,0	3,830	_	-	-	-	-	-
7,0	4,100	-	-	-	-	-	-
12,0	4,700	-	-	-	-	-	-

TELERISCALDAMENTO

Teleriscaldamento A2A - Bresc	ia			
Fattori di conversione: fp,ren	0,11	fp,nren 0,10	fp,tot	0,21
Valore nominale della potenza	termica utile dello s	cambiatore di calore	900,0	
POMPA DI CALORE				
ARISTON THERMO GROUP -	- NUOS EVO 80	-		
Pompa di calore	X elettric	a gas		
Tipo di pompa di calore (ambie	nte esterno/interno)	Aria esterna - Acqu	a	
Lato esterno (specificare aria/a	cqua/suolo, sonde	orizzontali/suolo, sonde ve	erticali/altro):	Aria
Fluido lato utenze (specificare a	aria/acqua/altro)	Acqua		
Potenza elettrica assorbita		0,00 W		

Potenza termica utile riscaldamento [kW]

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

[°C]	Tpozzo caldo [°C]						
	55	-	_	-	_	_	_
7,0	0,572	-	-	-	-	-	-
15,0	0,665	-	-	-	-	-	-
20,0	0,680	-	-	-	-	-	-
35,0	0,862	-	-	-	-	-	-

Coefficiente di prestazione (COP)

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo calo	do [°C]					
	55	-	-	-	-	-	-
7,0	2,290	-	-	-	-	-	-
15,0	2,660	-	-	-	-	-	-
20,0	2,720	-	-	-	-	-	-
35,0	3,450	-	-	-	-	-	-
POMPA DI CA	ALORE						
ARISTON THE	ERMO GROU	P - NUOS 20	0				
Pompa di calo	re		X elettrica		a gas		
Tipo di pompa	di calore (am	biente estern	o/interno)	Aria estern	a - Acqua		
Lato esterno (s	specificare ari	ia/acqua/suol	o, sonde orizz	ontali/suolo,	sonde vertica	li/altro): Ari	a
Fluido lato ute	nze (specifica	ire aria/acqua	/altro) Ac	qua		_	
Potenza elettri	ca assorbita		0,0	0 W		_	
Potenza termi	ica utile risca	aldamento [k	W]				
Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda Ts,fredda Tpozzo caldo l°Cl							
			pozzo caldo e	sorgente fre	dda		
Ts,fredda	Tpozzo calo	do [°C]	pozzo caldo e	sorgente fre	dda		
Ts,fredda [°C]	Tpozzo calo	do [°C]	pozzo caldo e	sorgente fre	dda		
Ts,fredda	Tpozzo calo	do [°C]	pozzo caldo e	sorgente fre	dda		
Ts,fredda [°C]	Tpozzo calo 55 1,942	do [°C] -	pozzo caldo e	sorgente fre	dda 		-
Ts,fredda [°C] 7,0 Coefficiente c	Tpozzo calo 55 1,942 li prestazione	do [°C] - - e (COP)	-	-			
Ts,fredda [°C]	Tpozzo calo 55 1,942 li prestazione	do [°C] - e (COP) mperature di	-	-			
Ts,fredda [°C] 7,0 Coefficiente could dato è in function. Ts,fredda	Tpozzo calo 55 1,942 Ii prestaziono zione delle te Tpozzo calo	do [°C] - e (COP) mperature di	-	sorgente fre			-
Ts,fredda [°C] 7,0 Coefficiente co Il dato è in fun: Ts,fredda [°C]	Tpozzo cald 55 1,942 Ii prestazione zione delle tel Tpozzo cald	do [°C] - e (COP) mperature di	-	-		-	
Ts,fredda [°C] 7,0 Coefficiente could dato è in function. Ts,fredda	Tpozzo calo 55 1,942 Ii prestaziono zione delle te Tpozzo calo	do [°C] - e (COP) mperature di	-	sorgente fre			-
Ts,fredda [°C] 7,0 Coefficiente co Il dato è in fun: Ts,fredda [°C]	Tpozzo cald 55 1,942 Ii prestazione zione delle te Tpozzo cald 55 3,100	do [°C] - e (COP) mperature di	-	sorgente fre		-	-
Ts,fredda [°C] 7,0 Coefficiente of the coefficient of the coefficien	Tpozzo calo 55 1,942 Ii prestazione zione delle tel Tpozzo calo 55 3,100	do [°C] e (COP) mperature di do [°C] -	oozzo caldo e	sorgente fre		- - -	
Ts,fredda [°C] 7,0 Coefficiente co Il dato è in fun: Ts,fredda [°C] 7,0 POMPA DI CA ARISTON THE	Tpozzo calo 55 1,942 ii prestazione zione delle tel Tpozzo calo 55 3,100 ALORE	do [°C] e (COP) mperature di do [°C] -	- pozzo caldo e	sorgente fre	dda -	-	-
Ts,fredda [°C] 7,0 Coefficiente of the state of the sta	Tpozzo calo 55 1,942 ii prestazione zione delle tel Tpozzo calo 55 3,100 ALORE	do [°C] e (COP) mperature di do [°C] -	oozzo caldo e	sorgente fre			
Ts,fredda [°C] 7,0 Coefficiente co Il dato è in fun: Ts,fredda [°C] 7,0 POMPA DI CA ARISTON THE	Tpozzo calo 55 1,942 Ii prestazione zione delle tel Tpozzo calo 55 3,100 ALORE ERMO GROU	do [°C] e (COP) mperature di do [°C] -	oozzo caldo e	sorgente fre	dda		-
Ts,fredda [°C] 7,0 Coefficiente of the control of	Tpozzo calo 55 1,942 Ii prestazione zione delle te Tpozzo calo 55 3,100 ALORE ERMO GROUre di calore (am	do [°C] e (COP) mperature di do [°C]	pozzo caldo e - VO 80 X elettrica o/interno)	sorgente fre	dda	li/altro): Ari	-

Acqua

Fluido lato utenze (specificare aria/acqua/altro)

Potenza elettrica assorbita	0,00 W
1 Otoniza orotanoa accorbita	0,00 11

Potenza termica utile riscaldamento [kW]

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo calc	do [°C]		J			
	55	_	_		_	_	_
7,0	0,572		-	-	-	-	-
15,0	0,665	-	-	-	-	-	-
20,0	0,680	-	-	-	-	-	-
35,0	0,862	-	-	-	-	-	-

Coefficiente di prestazione (COP)

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo cal	do [°C]					
		T.	ı		ı	Т	1
	55	-	_	-	-	-	-
7,0	2,290	-	-	-	-	-	-
15,0	2,660	-	-	-	-	-	-
20,0	2,720	-	-	-	-	-	-
35,0	3,450	-	-	-	-	-	-

POMPA DI CALORE

ARISTON THERMO GROUP - NUOS	EVO 80		
Pompa di calore	X elettrica	a gas	
Tipo di pompa di calore (ambiente este	rno/interno)	Aria esterna - Acqua	
Lato esterno (specificare aria/acqua/su	olo, sonde oriz	zontali/suolo, sonde verticali/altro):	Aria
Fluido lato utenze (specificare aria/acqu	ua/altro) Ao	cqua	
Potenza elettrica assorbita	0,	00 W	

Potenza termica utile riscaldamento [kW]

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo caldo [°C]						
	55	-	_		_		-
7,0	0,572	-	-	-	-	-	-
15,0	0,665	-	-	-	-	-	-
20,0	0,680	-	-	-	-	-	-
35,0	0,862	-	-	-	-	-	-

Coefficiente di prestazione (COP)

Il dato è in funzione delle temperature di pozzo caldo e sorgente fredda

Ts,fredda [°C]	Tpozzo caldo [°C]						
	55	-	-	-	-	-	-
7,0	2,290	-	-	-	-	-	-
15,0	2,660	-	-	-	-	-	-
20,0	2,720	-	-	-	-	-	-
35,0	3,450	-	-	_	-	-	-

MACCHINA FRIGORIFERA

Mitsubishi Electric - PUHY-P350YNW-A C - - -

Tipo di pompa di calore (ambiente esterno/interno)

Aria esterna/Aria

Temperatura b.u. dell'aria nell'ambiente interno:19,00

Temperatura bulbo secco dell'aria esterna:35,00

Funzionamento pompa Energia elettrica

Funzionamento pompa Raffrescamento

Potenza nominale 40,0 kW

Potenza elettrica assorbita 0,00 W

PRESTAZIONI

Fattore di carico	EER
100 %	4,05
75 %	5,9
50 %	7,07
25 %	3,77

MACCHINA FRIGORIFERA

Mitsubishi Electric - PUHY-P350YNW-A C - - -

Tipo di pompa di calore (ambiente esterno/interno)

Aria esterna/Aria

Temperatura b.u. dell'aria nell'ambiente interno:19,00

Temperatura bulbo secco dell'aria esterna:35,00

Funzionamento pompa Energia elettrica

Funzionamento pompa Raffrescamento

Potenza nominale 40,0 kW

Potenza elettrica assorbita 0,00 W

PRESTAZIONI

Fattore di carico	EER
100 %	4,05
75 %	5,9
50 %	7,07
25 %	3,77

MACCHINA FRIGORIFERA

Mitsubishi Electric - PUHY-P350YNW-A C - - -

Tipo di pompa di calore (ambiente esterno/interno)

Aria esterna/Aria

Temperatura b.u. dell'aria nell'ambiente interno:19,00

Temperatura bulbo secco dell'aria esterna:35,00

Funzionamento pompa Energia elettrica

Funzionamento pompa Raffrescamento

Potenza nominale 40,0 kW

Potenza elettrica assorbita 0,00 W

PRESTAZIONI

Fattore di carico	EER
100 %	4,05
75 %	5,9
50 %	7,07
25 %	3,77

MACCHINA FRIGORIFERA

Mitsubishi Electric - PUHY-P200YNW-A C - - -

Tipo di pompa di calore (ambiente esterno/interno)

Aria esterna/Aria

Temperatura b.u. dell'aria nell'ambiente interno:19,00

Temperatura bulbo secco dell'aria esterna:35,00

Funzionamento pompa Energia elettrica

Funzionamento pompa Raffrescamento

Potenza nominale 22,4 kW

Potenza elettrica assorbita 0,00 W

PRESTAZIONI

Fattore di carico	EER
100 %	5,28
75 %	7,78
50 %	9,67
25 %	5,43

MACCHINA FRIGORIFERA

Mitsubishi Electric - PUHY-P700YSNW-A C - - -

Tipo di pompa di calore (ambiente esterno/interno)

Aria esterna/Aria

Temperatura b.u. dell'aria nell'ambiente interno:19,00

Temperatura bulbo secco dell'aria esterna:35,00

Funzionamento pompa Energia elettrica

Funzionamento pompa Raffrescamento

Potenza nominale 85,0 kW

Potenza elettrica assorbita 0,00 W

PRESTAZIONI

Fattore di carico	EER
100 %	3,87
75 %	5,35
50 %	6,66
25 %	4,57

MACCHINA FRIGORIFERA

Mitsubishi Electric - PUHY-	P800YSNW-A C	
Tipo di pompa di calore (ar	nbiente esterno/interno)	Aria esterna/Aria
Temperatura b.u. dell'aria r	nell'ambiente interno:19,00	
Temperatura bulbo secco d	dell'aria esterna:35,00	
Funzionamento pompa	Energia elettrica	
Funzionamento pompa	Raffrescamento	
Potenza nominale	90,0 kW	
Potenza elettrica assorbita	0,00 W	<u> </u>

PRESTAZIONI

Fattore di carico	EER
100 %	3,95
75 %	5,74
50 %	7,25
25 %	4,44

nelle singole zone o unità immobiliari:

Per gli impianti termici con o senza produzione di acqua calda sanitaria, che utilizzano, in tutto o in parte, macchine diverse da quelle sopra descritte, le prestazioni di dette macchine sono fornite utilizzando le caratteristiche fisiche della specifica apparecchiatura, e applicando, ove esistenti, le vigenti norme tecniche.

c. Specifiche relative ai sistemi di regolazione dell'impianto termico

Tipo di conduzione invernale prevista:
Continua con attenuazione notturna
X Intermittente
Tipo di conduzione estiva prevista:
Continua con attenuazione notturna
X Intermittente
Sistema di gestione dell'impianto termico
unità interne ad espansione diretta programmabili in modo indipendente sia come temperature che orari di funzionamento

Denominazione	Regolazione	Descrizione	

Regolatori climatici e dispositivi per la regolazione automatica della temperatura ambiente nei singoli locali o

Scuola S.Andrea Concesio- 04 Zona Scuola Media PT	Regolazione di ambiente e sonda climatica		pannello a filo	
Scuola S.Andrea Concesio- 01 Zona Auditorium	Regolazione di ambiente e sonda climatica		pannello a filo	
Scuola S.Andrea Concesio- 03 Zona Scuola Elementare PT	Regolazione di ambiente e sonda climatica		pannello a filo	
Scuola S.Andrea Concesio- 07 Spogliatoi Palestra	Termostato di zona e sonda climatica		termostato ambiente	
Scuola S.Andrea Concesio- 06 Zona Scuola Media P1	Regolazione di ambiente e sonda climatica		pannello a filo	
Scuola S.Andrea Concesio- 05 Zona Scuola Elementare P1	Regolazione di ambiente e sonda climatica		pannello a filo	
Scuola S.Andrea Concesio- 02 Zona Mensa	Regolazione di ambiente		pannello a filo	
Scuola S.Andrea Concesio- 08 Palestra attività	Termostato di zona e sonda climatica		termostato ambiente	
Scuola S.Andrea Concesio- 09 Servizi Auditorium	Termostato di zona e sonda climatica	0	pannello a filo	0

N: numero apparecchi Livelli: Numero di livelli di programmazione nelle 24 ore

d. Dispositivi per la contabilizzazione del calore/freddo nelle singole unità immobiliari (solo per impianti centralizzati)

Per Climatizzazione invernale		
Numero di apparecchi 0		
Descrizione sintetica dispositivo		
Per Acqua Calda Sanitaria		
Numero di apparecchi 0		
Descrizione sintetica dispositivo		
Per Climatizzazione estiva		
Numero di apparecchi 0	_	
Descrizione sintetica dispositivo		

e. Terminali di erogazione dell'energia termica Elenco dei terminali di erogazione dell'unità immobiliare

Denominazione	N	Tipologia	P [W]
U.I.1-04 Zona Scuola Media PT	vedasi elab. progetto impianti	Bocchette	20 000,0
U.I.1-01 Zona Auditorium	vedasi elab. progetto impianti	Bocchette	34 470,0
U.I.1-03 Zona Scuola Elementare PT	vedasi elab. progetto impianti	Bocchette	34 530,0
U.I.1-07 Spogliatoi Palestra	vedasi elab. progetto impianti	Pannelli radianti	25 151,1
U.I.1-06 Zona Scuola Media P1	vedasi elab. progetto impianti	Bocchette	74 970,0
U.I.1-05 Zona Scuola Elementare P1	vedasi elab. progetto impianti	Bocchette	70 410,0
U.I.1-02 Zona Mensa	vedasi elab. progetto impianti	Bocchette	20 000,0
U.I.1-08 Palestra attività	vedasi elab. progetto impianti	Pannelli radianti	21 818,3
U.I.1-09 Servizi Auditorium	vedasi elab. progetto impianti	Radiatori	1 381,6

N Numero di apparecchi P Potenza installata

f. Condotti di evacuazione dei prodotti della combustione

Descrizione e caratteristiche principali

non sono presenti generatori a combustione.

g. Sistemi di trattamento dell'acqua (tipo di trattamento)

Descrizione e caratteristiche principali

sistema di addolcimento dell'acqua in centrale termica.

h. Specifiche dell'isolamento termico della rete di distribuzione

Tipologia, conduttività termica, spessore (vedi allegati alla relazione tecnica)

i. Schemi funzionali degli impianti termici

In allegato sono inseriti schemi unifilari di impianto termico con specificato
Posizionamento e potenze dei terminali di erogazione – Vedasi elaborati impianti di progetto
Posizionamento e tipo dei generatori – Vedasi elaborati impianti di progetto
Posizionamento e tipo degli elementi di distribuzione – Vedasi elaborati impianti di progetto
Posizionamento e tipo degli elementi di controllo – Vedasi elaborati impianti di progetto
Posizionamento e tipo degli elementi di sicurezza –

5.2 Impianti fotov	ol	Itai	ici
--------------------	----	------	-----

Nella modellazione dell'edificio sono presenti impianti fotovoltaici Descrizione con caratteristiche tecniche e schemi funzionali (vedi allegati	[X] Si alla relaz	[] No cione tecnica)
5.3 Impianti solari termici		
Nella modellazione dell'edificio sono presenti impianti solari termici Descrizione con caratteristiche tecniche e schemi funzionali (vedi allegati		[X] No cione tecnica)
5.4 Impianti di illuminazione		
Nella modellazione dell'edificio sono presenti impianti di illuminazione Descrizione con caratteristiche tecniche e schemi funzionali (vedi allegati	[X] Si alla relaz	[] No cione tecnica)
5.5 Altri impianti		
Altri impianti dell'edificio [X] Si [] No		
Descrizione con caratteristiche tecniche e schemi funzionali Ascensore		

6 PRINCIPALI RISULTATI DEI CALCOLI

X Si dichiara che l'edificio oggetto della presente relazione può essere definito "edificio ad energia quasi zero" in quanto sono contemporaneamente rispettati - tutti i requisiti previsti dalla lettera b) del punto 6.13 dell'Allegato 1 del decreto attuativo della DGR 3868 del 17.7.2015 - gli obblighi di integrazione delle fonti rinnovabili previsti dalla lettera c) del punto 6.13 dell'Allegato 1 del decreto attuativo della DGR 3868 del 17.7.2015.

a. Involucro edilizio e ricambi d'aria

Trasmittanza termica degli elementi divisori tra alloggi o unità immobiliari confinanti; confronto con i valori limite:

Trasmittanza termica (U) degli elementi divisori tra alloggi o unità immobiliari confinanti

Elemento edilizio	U	Ulim	Verificato
CO01 - ZNR vs EST - 40 - Pannello sandwich	0,626 W/(m²K)	0,800 W/(m²K)	SI
MI01 - INT - 210 - Parete divisoria tra aule	0,248 W/(m²K)	0,800 W/(m²K)	SI
MI02 - INT - 170 - Parete interna palestra	0,262 W/(m ² K)	0,800 W/(m²K)	SI
MI03 - INT - 125 - Parete divisoria standard	0,395 W/(m ² K)	0,800 W/(m²K)	SI
MI03g - INT - 290 - Parete divisoria bagni	0,396 W/(m²K)	0,800 W/(m²K)	SI
MI04a - INT - 445 - Parete in C.A. con controparete	0,238 W/(m²K)	0,800 W/(m²K)	SI
MI04d - AUI - 340 - Parete interna verso palestra	0,672 W/(m ² K)	0,800 W/(m²K)	SI
S07P - INT - 47 - Pavimento P1 (verso mensa)	0,693 W/(m²K)	0,800 W/(m²K)	SI

Verifica termoigrometrica:

vedi allegati alla relazione tecnica.

Numero di ricambi d'aria (media nelle 24 ore):

vedi allegati alla relazione tecnica.

Portata d'aria di ricambio solo nei casi di ventilazione meccanica controllata:

vedi allegati alla relazione tecnica.

Portata dell'aria circolante attraverso apparecchiature di recupero del calore disperso:

vedi allegati alla relazione tecnica.

Rendimento termico delle apparecchiature di recupero del calore disperso:

vedi allegati alla relazione tecnica.

b. Indici di prestazione energetica per la climatizzazione invernale ed estiva, per la produzione di acqua calda sanitaria, per la ventilazione, l'illuminazione e il trasporto

Determinazione dei seguenti indici di prestazione energetica, espressi in kWh/m² anno, così come definite al comma 3.3 dell'Allegato 1 del decreto di cui all'articolo 4, comma 1 del decreto legislativo 192/2005, rendimenti e parametri che ne caratterizzano l'efficienza energetica.

Verifica coefficiente medio globale di scambio termico per trasmissione:

Unità immobiliare	H'T	H'T,lim	Verifica
H'T Scuola S.Andrea Concesio	0,296	0,550	SI

H'T: Coefficiente medio globale di scambio termico per trasmissione per unità di superficie disperdente HⁱT (UNI EN ISO 13789)

H'T,lim:Valore limite del coefficiente globale di scambio termico per trasmissione per unità di superficie disperdente

Verifica dell'area solare equivalente estiva dei componenti finestrati

Unità immobiliare	A _{sol,est} /A _{sup,utile}	A _{sol,est} /A _{sup,utile} limite	Verifica
Asol,est/Asup utile Scuola S.Andrea Concesio	0,008	0,040	SI

Verifica indice di prestazione termica utile

Indice di prestazione termica utile per la climatizzazione invernale EPH,r	nd	105,55 kWh/m²
Indice di prestazione termica utile per la climatizzazione invernale calcolato nell'edificio di riferimento EPH,nd 108,40 kWh/		
	Verifica:	SI
Indice di prestazione termica utile per la climatizzazione estiva EPC,nd		1,21 kWh/m²
Indice di prestazione termica utile per la climatizzazione estiva calcolato nell'edificio di riferimento EPC,nd		1,40 kWh/m²
	Verifica:	SI

Verifica indice di prestazione energetica globale dell'edificio

Indice di prestazione energetica globale dell'edificio, espresso in energerimaria non rinnovabile $EP_{gl,nr}$	gia 41,14 kWh/m² ————————————————————————————————————
Indice di prestazione energetica globale dell'edificio EP _{gl,tot}	100,45 kWh/m²
Indice di prestazione energetica globale dell'edificio calcolato nell'edifi	cio di
riferimento EPgI,tot,limite	162,65 kWh/m²
	Verifica: SI
Verifica Efficienza media stagionale In caso di sola sostituzione del generatore di calore, le verifiche di efficiente e si intendono rispettate se l'efficienza dei nuovi generatori è	
Efficienza media stagionale dell'impianto di riscaldamento ηΗ	2,574
Efficienza media stagionale dell'impianto di riscaldamento calcolato nell'edificio di riferimento ηΗ,limite	1,983
Tien camole at mermicine ip i, mine	Verifica: SI
Efficienza media stagionale dell'impianto di produzione di ACS ηW :	1,295
Efficienza media stagionale dell'impianto di ACS calcolato nell'edificio di riferimento ηW ,limite	1,172
	Verifica: SI
Efficienza media stagionale dell'impianto di raffrescamento ηC	0,466
Efficienza media stagionale dell'impianto di raffrescamento calcolato	
nell'edificio di riferimento ηC,limite	0,143
	Verifica: SI
c. Impianti solari termici per la produzione di acqua calda sanitari	a
Non presenti.	
d. Impianti fotovoltaici	
Connessione impianto: Grid connected	
Tipo moduli Unical - MULTIVOLT 500 BLACK - MODULO FOTO TYPE 500 W-BF	VOLTAICO MONOCRISTALLINO N-
Tipo installazione Integrati	
Tipo supporto Metallico	

Descrizione tipo supporto (se altro)				
Inclinazione	10 °			
Orientamento	0°			
Potenza installat	a 146,20 kW			
Percentuale cop	ertura fabbisogno annuo 64,99 %			

e. Consuntivo energia

Energia prodotta in sito

Vettore energetico	Udm	Qdel,insitu
Energia elettrica da solare fotovoltaico [H]	kWh	11 843,00
Energia elettrica da solare fotovoltaico [W]	kWh	526,75
Energia elettrica da solare fotovoltaico [C]	kWh	6 685,42
Energia elettrica da solare fotovoltaico [L]	kWh	51 609,09
Energia elettrica da solare fotovoltaico [V]	kWh	62 438,19
Energia elettrica da solare fotovoltaico [T]	kWh	688,14
Energia termica da solare termico [H]	kWh	0,00
Energia termica da solare termico [W]	kWh	0,00
Energia termica da solare termico [C]	kWh	0,00
Energia termica da solare termico [L]	kWh	0,00
Energia termica da solare termico [V]	kWh	0,00
Energia termica da solare termico [T]	kWh	688,14

Energia consegnata dall'esterno

Vettore energetico	Udm	Qdel,consegnata
Energia elettrica da rete [H]	kWh	30 596,20
Energia elettrica da rete [W]	kWh	191,63
Energia elettrica da rete [C]	kWh	10,86
Energia elettrica da rete [L]	kWh	28 439,56
Energia elettrica da rete [V]	kWh	33 637,70
Energia elettrica da rete [T]	kWh	370,73
Combustibile per Teleraffrescamento [H]	kWh	329 135,79
Combustibile per Teleraffrescamento [W]	kWh	13 719,97
Combustibile per Teleraffrescamento [C]	kWh	0,00
Combustibile per Teleraffrescamento [L]	kWh	0,00
Combustibile per Teleraffrescamento [V]	kWh	0,00
Combustibile per Teleraffrescamento [T]	kWh	0,00

Energia esportata

Vettore energetico	Udm	Qdel,esportata	
Energia elettrica da rete [H]	kWh	0,00	

Energia elettrica da rete [W]	kWh	57,34
Energia elettrica da rete [C]	kWh	1 338,57
Energia elettrica da rete [L]	kWh	5 539,24
Energia elettrica da rete [V]	kWh	6 760,28
Energia elettrica da rete [T]	kWh	74,51

Energia primaria Indice di prestazione rinnovabile diviso per servizio

Servizio	EPren [kWh/(m²a)]	
Riscaldamento	26,24	
Acqua calda sanitaria	0,67	
Raffrescamento	1,44	
Illuminazione	13,97	
Ventilazione	16,82	
Trasporto	0,19	

Indice di prestazione non rinnovabile diviso per servizio

Servizio	EPnren [kWh/(m²a)]	
Riscaldamento	14,79	
Acqua calda sanitaria	0,16	
Raffrescamento	0,00	
Illuminazione	11,92	
Ventilazione	14,10	
Trasporto	0,16	

Indice di prestazione globale diviso per servizio

Servizio	EPtot [kWh/(m²a)]	
Riscaldamento	41,03	
Acqua calda sanitaria	0,83	
Raffrescamento	1,44	
Illuminazione	25,90	
Ventilazione	30,93	
Trasporto	0,34	

f. Valutazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi ad alta efficienza

Vedi allegati alla relazione tecnica

7 ELEMENTI SPECIFICI CHE MOTIVANO EVENTUALI DEROGHE A NORME FISSATE DALLA NORMATIVA VIGENTE

Nei casi in cui la normativa vigente consente di derogare ad obblighi generalmente validi, in questa sezione vanno adeguatamente illustrati i motivi che giustificano la deroga nel caso specifico:

8 D	DCUMENTAZIONE ALLEGATA
	Piante di ciascun piano degli edifici con orientamento e indicazione d'uso prevalente dei singoli locali e definizione degli elementi costruttivi.
	Prospetti e sezioni degli edifici con evidenziazione dei sistemi fissi di protezione solare e definizione degli elementi costruttivi.
	Elaborati grafici relativi ad eventuali sistemi solari passivi specificatamente progettati per favorire lo sfruttamento degli apporti solari.
	Schemi funzionali degli impianti contenenti gli elementi di cui all'analoga voce del paragrafo 'Dati relativi agli impianti punto 5.1 lettera i' e dei punti 5.2, 5.3, 5.4, 5.5
Х	Tabelle con indicazione delle caratteristiche termiche, termo igrometriche e della massa efficace dei componenti opachi dell'involucro edilizio con verifica dell'assenza di rischio di formazione di muffe e di condensazioni interstiziali.
Χ	Tabelle con indicazione delle caratteristiche termiche dei componenti finestrati dell'involucro edilizio e della loro permeabilità all'aria.
	Schede con indicazione della fattibilità tecnica, ambientale ed economica per l'inserimento di sistemi alternativi ad alta efficienza.
	Altri eventuali allegati non obbligatori:
9 DI	CHIARAZIONE DI RISPONDENZA
	toscritto Ing. Pietro Brianza, iscritto a Ordine degli Ingegneri della Provincia di Brescia, n°2712, essendo noscenza delle sanzioni previste dall'articolo 27 della Legge regionale 11 dicembre 2006 - n. 24 e s.m.i.
	DICHIARA
	sotto la propria personale responsabilità che:
della b) i d	progetto relativo alle opere di cui sopra è rispondente alle prescrizioni contenute nel decreto attuativo DGR 3868 del 17.7.2015; ati e le informazioni contenuti nella relazione tecnica sono conformi a quanto contenuto o desumibile elaborati progettuali
	Data Firma
	31/01/2025

RIFERIMENTI NORMATIVI

Le norme di seguito elencate costituiscono i riferimenti principali sui quali si basa la metodologia di calcolo

Normativa nazionale

UNI/TS 11300-1	Prestazioni energetiche degli edifici - Parte 1: Determinazione del fabbisogno di energia termica dell'edificio per la climatizzazione estiva ed invernale
UNI/TS 11300-2	Prestazioni energetiche degli edifici - Parte 2: Determinazione del fabbisogno di energia primaria e dei rendimenti per la climatizzazione invernale, per la produzione di acqua calda sanitaria, per la ventilazione e per l'illuminazione in edifici non residenziali
UNI/TS 11300-3	Prestazioni energetiche degli edifici - Parte 3: Determinazione del fabbisogno di energia primaria e dei rendimenti per la climatizzazione estiva
UNI/TS 11300-4	Prestazioni energetiche degli edifici - Parte 4: Utilizzo di energie rinnovabili e di altri metodi di generazione per la climatizzazione invernale e per la produzione di acqua calda sanitaria
UNI/TS 11300-5	Calcolo dell'energia primaria e della quota di energia da fonti rinnovabili
UNI/TS 11300-6	Determinazione del fabbisogno di energia per ascensori, scale mobili e marciapiedi mobili
UNI 10349	Riscaldamento e raffrescamento degli edifici - Dati climatici
UNI EN ISO 13370	Prestazione termica degli edifici - Trasferimento di calore attraverso il terreno - Metodi di calcolo
UNI EN ISO 13788	Prestazione igrotermica dei componenti e degli elementi per edilizia - Temperatura superficiale interna per evitare l'umidità superficiale critica e la condensazione interstiziale - Metodi di calcolo
UNI EN 15193	Prestazione energetica degli edifici - Requisiti energetici per illuminazione
Decreto legislativo 3 marzo 2011, n. 28	Attuazione della direttiva 2009/28/CE sulla promozione dell'uso dell'energia da fonti rinnovabili, recante modifica e successiva abrogazione delle direttive 2001/77/CE e 2003/30/CE

Normative regionali

Decreto dirigente unità organizzativa 18 dicembre 2019 - n. 18546 Decreto dirigente unità organizzativa 8 marzo 2017 - n. 2456 Decreto dirigente unità organizzativa 12 gennaio 2017 - n. 176 Decreto dirigente unità organizzativa 18 gennaio 2016 - n. 224 Decreto dirigente unità organizzativa 30 luglio 2015 n. 6480 Deliberazione della giunta regionale 17 luglio 2015 - n. 3868
Deliberazione della giunta regionale 25 luglio 2022, n.1261 Deliberazione della giunta regionale 9 novembre 2020, n.1548 Deliberazione della giunta regionale 19 ottobre 2020, n. 1385 Deliberazione della giunta regionale 7 settembre 2015 - n. 1275 Deliberazione della giunta regionale 20 luglio 2015 - n. 967
Deliberazione della giunta regionale 30 dicembre 2016 - n. 1824 Deliberazione della giunta regionale 26 febbraio 2016 - n. 272
Decreto del Presidente della Provincia 16 agosto 2022, n. 11-68/Leg Deliberazione della giunta regionale 3 febbraio 2017 - n. 163 Deliberazione della giunta regionale 12 febbraio 2016 - n. 162 Deliberazione della giunta regionale n. 46-11968

Comune di Concesio- (BS)

ALLEGATI ALLA RELAZIONE TECNICA

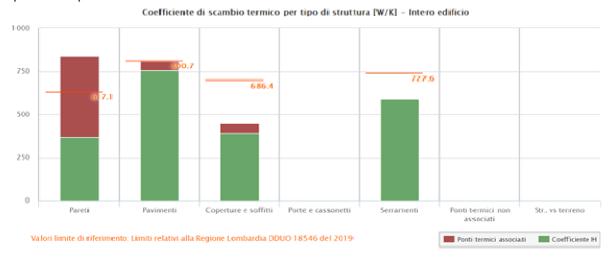
Dettagli di involucro

1 CARATTERISTICHE DEGLI ELEMENTI DI INVOLUCRO

ALLEGATI ALLA RELAZIONE TECNICA PROGETTUALE: L'INVOLUCRO DELL'EDIFICIO

Caratteristiche e dettagli dell'involucro opaco e trasparente.

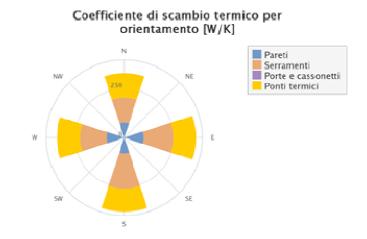
Di seguito si riportano gli elementi che costituiscono l'involucro dell'edificio e i rispettivi valori di trasmittanza. La trasmittanza termica corretta U' è valutata attribuendo i ponti termici associati agli elementi. La verifica è riportata e richiesta solo per interventi di riqualificazione di involucro o ristrutturazione importante di II livello.


Confronto con i valori limite di trasmittanza delle strutture

Elemento edilizio	Trasmittanza	Trasmittanza lim	Verificato
Strutture verticali opache	- W/(m ² K)	- W/(m²K)	-
Strutture orizzontali di pavimento	- W/(m²K)	- W/(m²K)	-
Strutture orizzontali o inclinate di copertura	- W/(m²K)	- W/(m²K)	-
Serramenti	- W/(m ² K)	- W/(m²K)	-

2 SCAMBI TERMICI PER CATEGORIA DI ELEMENTO

La quota di scambio termico globale per trasmissione viene determinata come sommatoria di tutte le trasmittanze per le relative superfici, opportunamente moltiplicate per il fattore di correzione dello scambio termico dovuto agli ambienti non climatizzati o climatizzati adiacenti.


Di seguito si riporta la distribuzione degli scambi termici per trasmissione in funzione del tipo di struttura opaca o trasparente che costituisce l'involucro.

Il grafico mostra la suddivisione dello scambio termico per zona termica.

Di seguito viene evidenziato il peso dell'orientamento delle strutture verticali sullo scambio termico globale.

3 ATTRIBUZIONE DEI PONTI TERMICI AGLI ELEMENTI DI INVOLUCRO

I ponti termici dell'edificio vengono attribuiti alle sole superfici di involucro alle quali sono associati. Il valore della trasmittanza corretta, molto utile per la progettazione, è determinata in funzione della relazione sequente:

$$U' = \frac{U \cdot A + \sum \Psi \cdot 1}{A}$$

Nel calcolo energetico vengono considerati tutti i ponti termici, compresi gli elementi con trasmittanza lineica negativa.

Di seguito vengono elencati per locale, gli elementi disperdenti con ponti termici associati e la percentuale di influenza relativa.

Scuola S.Andrea Concesio - 04 Zona Scuola Media PT - M.PT.003 - Sala Insegnanti

Element	o disperdente	Area	Or	U	U'
pa0078	ME01 - EST - 305 - Parete perimetrale in	8.9 m²	W	0,124 W/(m ² K)	0,200 W/(m ² K)
	cartongesso	0,5111	VV	0,124 VV/(III K)	0,200 W/(III K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0016	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0067	Me01a - Parete collegamento setti	0,616 W/(mK)	1,2 m	0,724 W/K	65,9 %
pt0015	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	5,1 %

Element	Elemento disperdente		Or	U	U'
pa0079	ME01 - EST - 305 - Parete perimetrale in cartongesso	27,0 m ²	S	0,124 W/(m ² K)	0,409 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0092	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,3 m	1,864 W/K	37,0 %
pt0093	Me01a - Parete - spallette serramento	0,200 W/(mK)	13,1 m	2,626 W/K	52,1 %
pt0016	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0068	Me01a - Parete collegamento setti	0,616 W/(mK)	5,4 m	3,318 W/K	65,9 %

Scuola S.Andrea Concesio - 04 Zona Scuola Media PT - M.PT.002 - Presidio operatore

Element	o disperdente	Area	Or	U	U'
pa0105	ME01 - EST - 305 - Parete perimetrale in cartongesso	4,1 m ²	N	0,124 W/(m ² K)	0,774 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0107	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,4 m	1,884 W/K	160,3 %
pt0073	Me01a - Parete collegamento setti	0,616 W/(mK)	1,3 m	0,774 W/K	65,9 %

Scuola S.Andrea Concesio - 04 Zona Scuola Media PT - M.PT.005 - Infermieria

Elemento disperdente		Area	Or	U	U'
pa0116	ME01 - EST - 305 - Parete perimetrale in cartongesso	2,8 m²	W	0,124 W/(m ² K)	0,187 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0021	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0074	Me01a - Parete collegamento setti	0,616 W/(mK)	0,4 m	0,225 W/K	65,9 %
pt0020	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	16,3 %

Element	Elemento disperdente		Or	U	U'
pa0118	ME01 - EST - 305 - Parete perimetrale in cartongesso	12,2 m ²	N	0,124 W/(m ² K)	0,407 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0108	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	42,1 %
pt0109	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	42,1 %
pt0110	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	42,1 %
pt0021	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0076	Me01a - Parete collegamento setti	0,616 W/(mK)	2,0 m	1,223 W/K	65,9 %

Scuola S.Andrea Concesio - 04 Zona Scuola Media PT - M.PT.008.09 - Bagno Personale

Element	o disperdente	Area	Or	U	U'
pa0119	ME01 - EST - 305 - Parete perimetrale in cartongesso	4,3 m ²	N	0,124 W/(m ² K)	0,407 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0111	Ponte termico associato Me01a - Parete - spallette serramento	Ψ 0,200 W/(mK)	Lunghezza 3,9 m	ψ * L 0,782 W/K	Incremento 121,9 %

Scuola S.Andrea Concesio - 04 Zona Scuola Media PT - M.PT.006.077 - Bagno alunni

Elemento disperdente		Area	Or	U	U'
pa0117	ME01 - EST - 305 - Parete perimetrale in cartongesso	4,5 m ²	N	0,124 W/(m ² K)	0,372 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0112	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	116,4 %
pt0022	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0075	Me01a - Parete collegamento setti	0,616 W/(mK)	0,7 m	0,442 W/K	65,9 %

Elemento disperdente		Area	Or	U	U'
pa0121	ME01 - EST - 305 - Parete perimetrale in cartongesso	1,9 m²	E	0,124 W/(m ² K)	0,179 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0022	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0078	Me01a - Parete collegamento setti	0,616 W/(mK)	0,3 m	0,155 W/K	65,9 %
pt0012	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	23,7 %

Scuola S.Andrea Concesio - 04 Zona Scuola Media PT - M.PT.001 - Connettivo

Elemento disperdente		Area	Or	U	U'
pa0046	ME01 - EST - 305 - Parete perimetrale in cartongesso	11,0 m ²	E	0,124 W/(m ² K)	0,201 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0007	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0008	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	4,1 %
pt0051	Me01a - Parete collegamento setti	0,616 W/(mK)	1,5 m	0,900 W/K	65,9 %

Elemento disperdente		Area	Or	U	U'
pa0075	ME01 - EST - 305 - Parete perimetrale in cartongesso	16,6 m²	S	0,124 W/(m ² K)	0,356 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0114	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	48,3 %
pt0115	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	48,3 %
pt0064	Me01a - Parete collegamento setti	0,616 W/(mK)	2,5 m	1,558 W/K	65,9 %

Element	Elemento disperdente		Or	U	U'
pa0076	ME01 - EST - 305 - Parete perimetrale in cartongesso	6,9 m²	S	0,124 W/(m ² K)	0,552 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0116	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	97,9 %
pt0117	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	97,9 %
pt0007	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0065	Me01a - Parete collegamento setti	0,616 W/(mK)	1,2 m	0,769 W/K	65,9 %

Element	o disperdente	Area	Or	U	U'
pa0077	ME01 - EST - 305 - Parete perimetrale in	15,3 m²	c	0,124 W/(m ² K)	0,907 W/(m ² K)
pauuri	cartongesso	13,3111	3	0,124 VV/(III K)	0,907 W/(III K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0118	Me01a - Parete - spallette serramento	0,200 W/(mK)	8,4 m	1,684 W/K	35,8 %
pt0119	Me01a - Parete - spallette serramento	0,200 W/(mK)	8,4 m	1,684 W/K	35,8 %
pt0120	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	38,3 %
pt0121	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	38,3 %
pt0122	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	38,3 %
pt0008	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	1,2 %
pt0015	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	1,2 %
pt0066	Me01a - Parete collegamento setti	0,616 W/(mK)	5,0 m	3,100 W/K	65,9 %

Element	Elemento disperdente		Or	U	U'
pa0104	ME01 - EST - 305 - Parete perimetrale in cartongesso	4,7 m ²	N	0,124 W/(m ² K)	1,049 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0123	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	97,7 %
pt0124	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	118,9 %
pt0020	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	3,7 %
pt0072	Me01a - Parete collegamento setti	0,616 W/(mK)	1,6 m	1,000 W/K	65,9 %

Scuola S.Andrea Concesio - 01 Zona Auditorium - A.02 - Auditorium

Elemento disperdente		Area	Or	U	U'
pa0006	ME01 - EST - 305 - Parete perimetrale in cartongesso	24,9 m²	S	0,124 W/(m ² K)	0,425 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0017	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	36,1 %
pt0018	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	43,9 %
pt0001	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	2,5 m	0,073 W/K	1,8 %
pt0001	Me01a - Parete collegamento setti	0,616 W/(mK)	3,4 m	2,072 W/K	50,4 %
pt0002	Me01a - Parete solaio	0,612 W/(mK)	3,4 m	2,057 W/K	50,0 %

Element	o disperdente	Area	Or	U	U'
pa0010	ME01 - EST - 305 - Parete perimetrale in cartongesso	34,2 m²	N	0,124 W/(m ² K)	0,248 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0009	Ponte termico associato Me01a - Parete collegamento setti	Ψ 0,616 W/(mK)	Lunghezza 3,5 m	ψ * L 2,138 W/K	Incremento 50,4 %

Elemento disperdente		Area	Or	U	U'
pa0013	ME01 - EST - 305 - Parete perimetrale in cartongesso	29,3 m²	E	0,124 W/(m ² K)	0,377 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0019	Me01a - Parete - spallette serramento	0,200 W/(mK)	8,8 m	1,764 W/K	40,3 %
pt0020	Me01a - Parete - spallette serramento	0,200 W/(mK)	6,6 m	1,323 W/K	30,2 %
pt0001	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	2,5 m	0,073 W/K	1,7 %
pt0003	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	2,5 m	-0,138 W/K	- %
pt0011	Me01a - Parete collegamento setti	0,616 W/(mK)	3,6 m	2,209 W/K	50,4 %
pt0012	Me01a - Parete solaio	0,612 W/(mK)	3,6 m	2,193 W/K	50,0 %

Element	Elemento disperdente		Or	U	U'
pa0014	ME01 - EST - 305 - Parete perimetrale in cartongesso	60,9 m²	S	0,124 W/(m ² K)	0,392 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0021	Me01a - Parete - spallette serramento	0,200 W/(mK)	8,8 m	1,764 W/K	18,7 %
pt0022	Me01a - Parete - spallette serramento	0,200 W/(mK)	8,8 m	1,764 W/K	18,7 %
pt0023	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	19,1 %
pt0024	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	19,1 %
pt0003	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	2,5 m	-0,138 W/K	- %
pt0004	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	2,5 m	-0,138 W/K	- %
pt0013	Me01a - Parete collegamento setti	0,616 W/(mK)	7,7 m	4,752 W/K	50,4 %
pt0014	Me01a - Parete solaio	0,612 W/(mK)	7,7 m	4,717 W/K	50,0 %

Element	Elemento disperdente		Or	U	U'
pa0015	ME01 - EST - 305 - Parete perimetrale in cartongesso	65,7 m ²	W	0,124 W/(m ² K)	0,433 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0025	Me01a - Parete - spallette serramento	0,200 W/(mK)	8,8 m	1,764 W/K	16,0 %
pt0026	Me01a - Parete - spallette serramento	0,200 W/(mK)	8,8 m	1,764 W/K	16,0 %
pt0027	Me01a - Parete - spallette serramento	0,200 W/(mK)	8,8 m	1,764 W/K	16,0 %
pt0028	Me01a - Parete - spallette serramento	0,200 W/(mK)	8,8 m	1,764 W/K	16,0 %
pt0029	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,8 m	2,365 W/K	21,5 %
pt0004	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	2,5 m	-0,138 W/K	- %
pt0015	Me01a - Parete collegamento setti	0,616 W/(mK)	9,0 m	5,548 W/K	50,4 %
pt0016	Me01a - Parete solaio	0,612 W/(mK)	9,0 m	5,508 W/K	50,0 %

Elemento disperdente		Area	Or	U	U'
pv0001	S04P - TER - 320 - Pavimento auditorium parte bassa (platea)	80,4 m ²	-	0,280 W/(m ² K)	0,486 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0002	Me01a - Parete solaio	0,612 W/(mK)	3,4 m	2,057 W/K	9,1 %
pt0010	Me01a - Parete solaio	0,612 W/(mK)	3,5 m	2,122 W/K	9,4 %
pt0012	Me01a - Parete solaio	0,612 W/(mK)	3,6 m	2,193 W/K	9,7 %
pt0014	Me01a - Parete solaio	0,612 W/(mK)	7,7 m	4,717 W/K	21,0 %
pt0016	Me01a - Parete solaio	0,612 W/(mK)	9,0 m	5,508 W/K	24,5 %

Scuola S.Andrea Concesio - 01 Zona Auditorium - A.09 - Deposito

Element	Elemento disperdente		Or	U	U'
pa0007	ME01 - EST - 305 - Parete perimetrale in cartongesso	21,6 m ²	W	0,124 W/(m ² K)	0,283 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0030	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	28,0 %
pt0002	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	2,5 m	-0,138 W/K	- %
pt0003	Me01a - Parete collegamento setti	0,616 W/(mK)	2,3 m	1,405 W/K	50,4 %
pt0004	Me01a - Parete solaio	0,612 W/(mK)	2,3 m	1,395 W/K	50,0 %

Element	o disperdente	Area	Or	U	U'
pa0009	ME01 - EST - 305 - Parete perimetrale in cartongesso	22,0 m ²	N	0,124 W/(m ² K)	0,242 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0002	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	2,5 m	-0,138 W/K	- %
pt0007	Me01a - Parete collegamento setti	0,616 W/(mK)	2,2 m	1,374 W/K	50,4 %
pt0008	Me01a - Parete solaio	0,612 W/(mK)	2,2 m	1,364 W/K	50,0 %

Element	o disperdente	Area	Or	U	U'
pv0003	S05P - TER - 220 - Pavimento auditorium parte alta (vespaio)	19,8 m²	-	0,286 W/(m ² K)	0,425 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0004	Me01a - Parete solaio	0,612 W/(mK)	2,3 m	1,395 W/K	24,6 %
pt0008	Me01a - Parete solaio	0,612 W/(mK)	2.2 m	1,364 W/K	24,1 %

Scuola S.Andrea Concesio - 07 Spogliatoi Palestra - P.03.04.05.06.07.08.09 - Spogliatoio M.

Element	o disperdente	Area	Or	U	U'
pa0028	MUR02E - EST - 400 - Parete blocco palestra esistente	23,1 m ²	W	0,209 W/(m ² K)	0,391 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0051	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	18,9 %
pt0006	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	2,2 m	-0,123 W/K	- %
pt0043	Me01a - Parete collegamento setti	0,616 W/(mK)	2,7 m	1,681 W/K	33,0 %
pt0044	Me01a - Parete solaio	0,612 W/(mK)	2,7 m	1,669 W/K	32,7 %

Element	o disperdente	Area	Or	U	U'
pa0036	MUR02E - EST - 400 - Parete blocco palestra esistente	34,7 m ²	N	0,209 W/(m ² K)	0,507 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0052	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	11,2 %
pt0053	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	11,2 %
pt0054	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	11,2 %
pt0055	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	11,2 %
pt0056	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	11,2 %
pt0006	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	2,2 m	-0,123 W/K	- %
pt0049	Me01a - Parete collegamento setti	0,616 W/(mK)	4,6 m	2,833 W/K	33,0 %
pt0050	Me01a - Parete solaio	0,612 W/(mK)	4,6 m	2,812 W/K	32,7 %

Element	o disperdente	Area	Or	U	U'
pv0005	SOL01 - ZNR - 43 - Pavimento palestra (esistente)	46,6 m²	-	0,263 W/(m ² K)	0,359 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0044	Me01a - Parete solaio	0,612 W/(mK)	2,7 m	1,669 W/K	13,6 %
pt0050	Me01a - Parete solaio	0,612 W/(mK)	4,6 m	2,812 W/K	23,0 %

Scuola S.Andrea Concesio - 07 Spogliatoi Palestra - P.011.12.13.14.15.16.17 - Spogliatoio F.

Element	o disperdente	Area	Or	U	U'
pa0027	MUR02E - EST - 400 - Parete blocco palestra esistente	34,0 m ²	N	0,209 W/(m ² K)	0,507 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0057	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	11,5 %
pt0058	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	11,5 %
pt0059	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	11,5 %
pt0060	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,6 m	0,922 W/K	11,0 %
pt0061	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,6 m	0,922 W/K	11,0 %
pt0005	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	2,2 m	-0,123 W/K	- %
pt0041	Me01a - Parete collegamento setti	0,616 W/(mK)	4,5 m	2,766 W/K	33,0 %
pt0042	Me01a - Parete solaio	0,612 W/(mK)	4,5 m	2,746 W/K	32,7 %

Element	Elemento disperdente		Or	U	U'
pa0035	MUR02E - EST - 400 - Parete blocco palestra esistente	23,1 m ²	E	0,209 W/(m ² K)	0,391 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0062	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	18,9 %
pt0005	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	2,2 m	-0,123 W/K	- %
pt0047	Me01a - Parete collegamento setti	0,616 W/(mK)	2,7 m	1,681 W/K	33,0 %
pt0048	Me01a - Parete solaio	0,612 W/(mK)	2,7 m	1,669 W/K	32,7 %

Element	o disperdente	Area	Or	U	U'
pv0005	SOL01 - ZNR - 43 - Pavimento palestra (esistente)	46,0 m ²	-	0,263 W/(m ² K)	0,359 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0042	Ponte termico associato Me01a - Parete solaio	Ψ 0,612 W/(mK)	Lunghezza 4,5 m	ψ * L 2,746 W/K	Incremento 22,7 %

Scuola S.Andrea Concesio - 07 Spogliatoi Palestra - P.18.19 - Infermieria

	. 3				
Element	o disperdente	Area	Or	U	U'
pa0029	MUR02E - EST - 400 - Parete blocco palestra esistente	15,2 m ²	E	0,209 W/(m ² K)	0,497 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0063	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	25,9 %
pt0064	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	25,9 %
pt0045	Me01a - Parete collegamento setti	0,616 W/(mK)	2,0 m	1,223 W/K	33,0 %
pt0046	Me01a - Parete solaio	0,612 W/(mK)	2,0 m	1,214 W/K	32,7 %

Element	o disperdente	Area	Or	U	U'
pv0005	SOL01 - ZNR - 43 - Pavimento palestra (esistente)	18,4 m²	-	0,263 W/(m ² K)	0,329 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0046	Me01a - Parete solaio	0,612 W/(mK)	2,0 m	1,214 W/K	25,1 %

Scuola S.Andrea Concesio - 07 Spogliatoi Palestra - P.02 - Connettivo ingresso

Element	Elemento disperdente		Or	U	U'
pa0053	ME01 - EST - 305 - Parete perimetrale in cartongesso	9,7 m²	N	0,124 W/(m ² K)	0,529 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0125	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,8 m	1,563 W/K	85,1 %
pt0126	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	58,9 %
pt0012	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	3,0 %
pt0056	Me01a - Parete collegamento setti	0,616 W/(mK)	2,0 m	1,211 W/K	65,9 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.016 - Laboratorio informatica

Element	o disperdente	Area	Or	U	U'
pa0250	ME01 - EST - 305 - Parete perimetrale in cartongesso	36,3 m²	W	0,124 W/(m ² K)	0,382 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0214	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	36,3 %
pt0215	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	36,3 %
pt0121	Me01a - Parete solaio	0,612 W/(mK)	6,6 m	4,033 W/K	65,2 %
pt0183	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	6,6 m	0,853 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0019	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	94,5 m²	=	0,148 W/(m ² K)	0,157 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0183	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	6,6 m	0,853 W/K	6,1 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.014 - Aula 02

Element	o disperdente	Area	Or	U	U'
pa0235	ME01 - EST - 305 - Parete perimetrale in cartongesso	19,3 m²	E	0,124 W/(m ² K)	0,372 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0232	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	69,2 %
pt0107	Me01a - Parete solaio	0,612 W/(mK)	3,5 m	2,115 W/K	65,2 %
pt0169	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,5 m	0,447 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0028	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	49,6 m²	-	0,148 W/(m ² K)	0,157 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.015 - Sala Insegnanti

Element	o disperdente	Area	Or	U	U'
pa0232	ME01 - EST - 305 - Parete perimetrale in cartongesso	16,4 m²	E	0,124 W/(m ² K)	0,332 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0233	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	60,4 %
pt0104	Me01a - Parete solaio	0,612 W/(mK)	2,6 m	1,602 W/K	65,2 %
pt0166	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,6 m	0,339 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pv0024	S06Pc - EST - 580 - Pavimento VS Esterno	18,0 m ²	-	0,252 W/(m ² K)	0,341 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento

Element	o disperdente	Area	Or	U	U'
so0028	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	37,4 m²	-	0,148 W/(m ² K)	0,158 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0166	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,6 m	0,339 W/K	6,1 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.029 - Aula 03

Element	o disperdente	Area	Or	U	U'
pa0254	ME01 - EST - 305 - Parete perimetrale in cartongesso	22,8 m ²	W	0,124 W/(m ² K)	0,372 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0234	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	40,4 %
pt0235	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	40,4 %
pt0045	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0046	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0125	Me01a - Parete solaio	0,612 W/(mK)	3,9 m	2,395 W/K	65,2 %
pt0187	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,9 m	0,506 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pa0286	ME01 - EST - 305 - Parete perimetrale in cartongesso	21,4 m ²	N	0,124 W/(m ² K)	0,353 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0236	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	64,2 %
pt0046	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0135	Me01a - Parete solaio	0,612 W/(mK)	3,7 m	2,280 W/K	65,2 %
pt0197	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,7 m	0,482 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0024	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	55,6 m²	-	0,148 W/(m ² K)	0,166 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0187	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,9 m	0,506 W/K	6,1 %
pt0197	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,7 m	0,482 W/K	5,8 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.030 - Aula 04

Element	o disperdente	Area	Or	U	U'
pa0256	ME01 - EST - 305 - Parete perimetrale in	20.5 m ²	W	0,124 W/(m ² K)	0,394 W/(m ² K)
pa0230	cartongesso	20,5 111	VV	0,124 VV/(III K)	0,334 VV/(III K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0237	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	43,8 %
pt0238	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	43,8 %
pt0045	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0127	Me01a - Parete solaio	0,612 W/(mK)	3,6 m	2,209 W/K	65,2 %
pt0189	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,6 m	0,467 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0024	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	50,8 m ²	-	0,148 W/(m ² K)	0,158 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0189	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,6 m	0,467 W/K	6,2 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.031 - Aula 05

Element	o disperdente	Area	Or	U	U'
pa0252	ME01 - EST - 305 - Parete perimetrale in cartongesso	28,2 m ²	S	0,124 W/(m ² K)	0,218 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0043	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0123	Me01a - Parete solaio	0,612 W/(mK)	3,7 m	2,277 W/K	65,2 %
pt0185	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,7 m	0,481 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pa0255	ME01 - EST - 305 - Parete perimetrale in cartongesso	21,6 m ²	W	0,124 W/(m ² K)	0,385 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0239	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	42,1 %
pt0240	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	42,1 %
pt0043	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0126	Me01a - Parete solaio	0,612 W/(mK)	3,8 m	2,300 W/K	65,2 %
pt0188	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,8 m	0,486 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0024	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	54,4 m²	-	0,148 W/(m ² K)	0,166 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0185	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,7 m	0,481 W/K	6,0 %
pt0188	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,8 m	0,486 W/K	6,0 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.037 - Biblioteca

Element	o disperdente	Area	Or	U	U'
pa0174	MUR02E - EST - 400 - Parete blocco palestra esistente	30,8 m ²	N	0,209 W/(m ² K)	0,406 W/(m ² K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0282	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	13,3 %
pt0283	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	13,3 %
pt0284	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	13,3 %
pt0025	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0026	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0090	Me01a - Parete solaio	0,612 W/(mK)	4,6 m	2,794 W/K	38,6 %
pt0152	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	4,6 m	0,591 W/K	8,2 %

Element	to disperdente	Area	Or	U	U'
pa0353	MUR02E - EST - 400 - Parete blocco palestra esistente	31,2 m ²	E	0,209 W/(m ² K)	0,408 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0285	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	13,1 %
pt0286	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	13,1 %
pt0287	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	13,1 %
pt0026	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0150	Me01a - Parete solaio	0,612 W/(mK)	4,6 m	2,828 W/K	38,6 %
pt0212	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	4,6 m	0,598 W/K	8,2 %

Element	to disperdente	Area	Or	U	U'
so0027	S09Pb - ZNR - 722 - Soffitto palestra (aula) h=2.95	83,6 m²	-	0,133 W/(m ² K)	0,148 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0152	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	4,6 m	0,591 W/K	5,3 %
pt0212	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	4,6 m	0,598 W/K	5,4 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.033 - Aula 07

Element	o disperdente	Area	Or	U	U'
pa0258	ME01 - EST - 305 - Parete perimetrale in cartongesso	17,1 m ²	S	0,124 W/(m ² K)	0,398 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0241	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	75,8 %
pt0047	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	1,9 %
pt0128	Me01a - Parete solaio	0,612 W/(mK)	3,2 m	1,969 W/K	66,5 %
pt0190	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,2 m	0,416 W/K	14,1 %

Element	o disperdente	Area	Or	U	U'
so0024	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	50,4 m ²	-	0,148 W/(m ² K)	0,157 W/(m ² K)
			_		
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.034 - Aula 06

Element	o disperdente	Area	Or	U	U'
pa0265	ME01 - EST - 305 - Parete perimetrale in	18,2 m²	c	0,124 W/(m ² K)	0,406 W/(m ² K)
pa0203	cartongesso	10,2 111	3	0,124 VV/(III K)	0,400 VV/(III K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0242	Me01a - Parete - spallette serramento	0,200 W/(mK)	13,1 m	2,626 W/K	79,1 %
pt0048	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0130	Me01a - Parete solaio	0,612 W/(mK)	3,5 m	2,164 W/K	65,2 %
pt0192	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,5 m	0,458 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0025	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	51,1 m ²	-	0,148 W/(m ² K)	0,157 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.035 - Aula 08

Element	o disperdente	Area	Or	U	U'
pa0266	ME01 - EST - 305 - Parete perimetrale in cartongesso	18,2 m²	S	0,124 W/(m ² K)	0,406 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0243	Me01a - Parete - spallette serramento	0,200 W/(mK)	13,1 m	2,626 W/K	79,2 %
pt0048	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0131	Me01a - Parete solaio	0,612 W/(mK)	3,5 m	2,162 W/K	65,2 %
pt0193	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,5 m	0,457 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0025	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	50,6 m ²	-	0,148 W/(m ² K)	0,157 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0193	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,5 m	0,457 W/K	6,1 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.038 - Laboratorio di arte

Element	Elemento disperdente		Or	U	U'
pa0175	MUR02E - EST - 400 - Parete blocco palestra esistente	18,0 m²	W	0,209 W/(m ² K)	0,304 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0027	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0028	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	1,5 %
pt0091	Me01a - Parete solaio	0,612 W/(mK)	2,4 m	1,456 W/K	38,6 %
pt0153	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,4 m	0,308 W/K	8,2 %

Element	o disperdente	Area	Or	U	U'
pa0193	MUR02E - EST - 400 - Parete blocco palestra esistente	30,7 m ²	N	0,209 W/(m ² K)	0,406 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0244	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	13,3 %
pt0245	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	13,3 %
pt0246	Me01a - Parete - spallette serramento	0,200 W/(mK)	4,8 m	0,962 W/K	13,3 %
pt0027	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0092	Me01a - Parete solaio	0,612 W/(mK)	4,6 m	2,793 W/K	38,6 %
pt0154	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	4,6 m	0,590 W/K	8,2 %
pt0025	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %

Element	o disperdente	Area	Or	U	U'
so0027	S09Pb - ZNR - 722 - Soffitto palestra (aula) h=2.95	58,2 m²	-	0,133 W/(m ² K)	0,149 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0153	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,4 m	0,308 W/K	4,0 %
pt0154	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	4.6 m	0.590 W/K	7,6 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.055.56.57.58 - Bagno alunni F.1

Element	o disperdente	Area	Or	U	U'
pa0287	ME01 - EST - 305 - Parete perimetrale in cartongesso	12,2 m²	N	0,124 W/(m ² K)	0,293 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0248	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	48,2 %
pt0136	Me01a - Parete solaio	0,612 W/(mK)	1,7 m	1,059 W/K	65,2 %
pt0198	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,7 m	0,224 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0026	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	14,2 m²	-	0,149 W/(m ² K)	0,165 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0198	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,7 m	0,224 W/K	10,5 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.019.21.22.23 - WC M1.1

Element	o disperdente	Area	Or	U	U'
pa0285	ME01 - EST - 305 - Parete perimetrale in cartongesso	12,9 m²	N	0,124 W/(m ² K)	0,293 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0249	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	45,6 %
pt0049	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	3,3 %
pt0134	Me01a - Parete solaio	0,612 W/(mK)	1,8 m	1,118 W/K	65,2 %
pt0196	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,8 m	0,236 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0026	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	14,3 m²	-	0,149 W/(m ² K)	0,166 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0196	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,8 m	0,236 W/K	11,1 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.018 - Deposito 2

Element	o disperdente	Area	Or	U	U'
pa0291	ME01 - EST - 305 - Parete perimetrale in cartongesso	2,8 m ²	W	0,124 W/(m ² K)	0,242 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0049	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	16,1 %
pt0137	Me01a - Parete solaio	0,612 W/(mK)	0,4 m	0,226 W/K	65,2 %
pt0199	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,4 m	0,048 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0021	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	17,4 m²	-	0,149 W/(m ² K)	0,152 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0199	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,4 m	0,048 W/K	1,8 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.039.40 - Antibagno bagno disabili

Element	o disperdente	Area	Or	U	U'
pa0295	ME01 - EST - 305 - Parete perimetrale in cartongesso	9,1 m²	N	0,124 W/(m ² K)	0,318 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0251	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	63,3 %
pt0140	Me01a - Parete solaio	0,612 W/(mK)	1,3 m	0,806 W/K	65,2 %
pt0202	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,3 m	0,170 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0029	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	8,2 m²	-	0,149 W/(m ² K)	0,170 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0202	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,3 m	0,170 W/K	14,0 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.013 - Aula 01

Element	Elemento disperdente		Or	U	U'
pa0231	ME01 - EST - 305 - Parete perimetrale in cartongesso	19,7 m²	E	0,124 W/(m ² K)	0,372 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0265	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	68,3 %
pt0035	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	1,7 %
pt0103	Me01a - Parete solaio	0,612 W/(mK)	3,5 m	2,144 W/K	65,2 %
pt0165	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,5 m	0,453 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0028	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	52,9 m²	-	0,148 W/(m ² K)	0,157 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0165	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,5 m	0,453 W/K	5,8 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.041.42.43.44.45 - Bagno alunni M.2

Element	Elemento disperdente		Or	U	U'
pa0296	ME01 - EST - 305 - Parete perimetrale in cartongesso	14,4 m²	N	0,124 W/(m ² K)	0,343 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0252	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	39,0 %
pt0253	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	39,0 %
pt0141	Me01a - Parete solaio	0,612 W/(mK)	2,1 m	1,309 W/K	65,2 %
pt0203	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,1 m	0,277 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0029	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	15,1 m²	-	0,149 W/(m ² K)	0,167 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0203	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,1 m	0,277 W/K	12,3 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.046.47.48.49.50 - WC F2.1

Element	Elemento disperdente		Or	U	U'
pa0294	ME01 - EST - 305 - Parete perimetrale in cartongesso	12,4 m ²	N	0,124 W/(m ² K)	0,433 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0254	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	41,7 %
pt0255	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	41,7 %
pt0256	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	41,7 %
pt0139	Me01a - Parete solaio	0,612 W/(mK)	2,0 m	1,223 W/K	65,2 %
pt0201	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,0 m	0,259 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0029	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	15,0 m ²	-	0,149 W/(m ² K)	0,166 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0201	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,0 m	0,259 W/K	11,6 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.051.52 - Antibagno personale F.

Elemento disperdente		Area	Or	U	U'
pa0340	ME01 - EST - 305 - Parete perimetrale in cartongesso	4,6 m ²	N	0,124 W/(m ² K)	0,410 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0257	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	113,9 %
pt0143	Me01a - Parete solaio	0,612 W/(mK)	0,7 m	0,448 W/K	65,2 %
pt0205	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,7 m	0,095 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0029	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	5,3 m ²	-	0,149 W/(m ² K)	0,167 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0205	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,7 m	0,095 W/K	12,1 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.053.54 - Antibagno personale M.

Element	Elemento disperdente		Or	U	U'
pa0341	ME01 - EST - 305 - Parete perimetrale in cartongesso	4,4 m²	N	0,124 W/(m ² K)	0,434 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0258	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	119,4 %
pt0144	Me01a - Parete solaio	0,612 W/(mK)	0,7 m	0,427 W/K	65,2 %
pt0206	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,7 m	0,090 W/K	13,8 %
pt0035	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	8,5 %

Element	o disperdente	Area	Or	U	U'
so0029	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	5,7 m ²	-	0,149 W/(m ² K)	0,165 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0206	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,7 m	0,090 W/K	10,7 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.011 - Connettivo

Element	Elemento disperdente		Or	U	U'
pa0268	ME01 - EST - 305 - Parete perimetrale in cartongesso	25,4 m ²	S	0,124 W/(m ² K)	0,371 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0274	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	31,6 %
pt0275	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	31,6 %
pt0276	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	31,6 %
pt0133	Me01a - Parete solaio	0,612 W/(mK)	3,9 m	2,361 W/K	65,2 %
pt0195	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,9 m	0,499 W/K	13,8 %

Element	Elemento disperdente		Or	U	U'
pa0293	ME01 - EST - 305 - Parete perimetrale in cartongesso	7,9 m²	N	0,124 W/(m ² K)	0,448 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0277	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	64,5 %
pt0278	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	64,5 %
pt0028	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	4,6 %
pt0138	Me01a - Parete solaio	0,612 W/(mK)	1,3 m	0,790 W/K	65,2 %
pt0200	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,3 m	0,167 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0021	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	428,7 m ²	-	0,149 W/(m ² K)	0,151 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0195	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,9 m	0,499 W/K	0,8 %
pt0200	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,3 m	0,167 W/K	0,3 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.032 - Laboratorio di lingue

Elemento disperdente		Area	Or	U	U'
pa0253	ME01 - EST - 305 - Parete perimetrale in cartongesso	30,2 m ²	S	0,124 W/(m ² K)	0,218 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0044	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0124	Me01a - Parete solaio	0,612 W/(mK)	4,0 m	2,440 W/K	65,2 %
pt0186	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	4,0 m	0,516 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pa0259	ME01 - EST - 305 - Parete perimetrale in	20,3 m²	Е	0,124 W/(m ² K)	0,398 W/(m ² K)
pauzos	cartongesso	20,3 111		0,124 VV/(III K)	0,390 W/(III K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0279	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	44,1 %
pt0280	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	44,1 %
pt0047	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	1,7 %
pt0044	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0129	Me01a - Parete solaio	0,612 W/(mK)	3,6 m	2,193 W/K	65,2 %
pt0191	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,6 m	0,464 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0024	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	54,3 m²	-	0,148 W/(m ² K)	0,167 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0186	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	4,0 m	0,516 W/K	6,4 %
pt0191	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,6 m	0,464 W/K	5,8 %

Scuola S.Andrea Concesio - 06 Zona Scuola Media P1 - M.P1.036 - Aula 09

Elemento disperdente		Area	Or	U	U'
pa0267	ME01 - EST - 305 - Parete perimetrale in cartongesso	17,7 m²	S	0,124 W/(m ² K)	0,417 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0281	Me01a - Parete - spallette serramento	0,200 W/(mK)	13,1 m	2,626 W/K	80,8 %
pt0132	Me01a - Parete solaio	0,612 W/(mK)	3,5 m	2,120 W/K	65,2 %
pt0194	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,5 m	0,448 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0025	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	48,9 m²	-	0,148 W/(m ² K)	0,158 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.052 - Laboratorio M

Element	o disperdente	Area	Or	U	U'
pa0214	ME01 - EST - 305 - Parete perimetrale in cartongesso	20,6 m ²	N	0,124 W/(m ² K)	0,385 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0216	Me01a - Parete - spallette serramento	0,200 W/(mK)	13,1 m	2,626 W/K	72,7 %
pt0029	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0093	Me01a - Parete solaio	0,612 W/(mK)	3,9 m	2,355 W/K	65,2 %
pt0155	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,9 m	0,498 W/K	13,8 %

Element	Elemento disperdente		Or	U	U'
pa0222	ME01 - EST - 305 - Parete perimetrale in cartongesso	7,7 m ²	E	0,124 W/(m ² K)	0,215 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0029	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0101	Me01a - Parete solaio	0,612 W/(mK)	1,0 m	0,625 W/K	65,2 %
pt0163	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,0 m	0,132 W/K	13,8 %
pt0032	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	5,8 %

Element	o disperdente	Area	Or	U	U'
pv0009	S08P - ZNR - 47 - Pavimento (porzione monopiano)	53,5 m²	-	0,503 W/(m ² K)	0,559 W/(m ² K)
	Doute towning consists		Lunahazza	+ 1	1
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0093	Me01a - Parete solaio	Ψ 0,612 W/(mK)	3,9 m	Ψ " L 2,355 W/K	8,8 %

Element	o disperdente	Area	Or	U	U'
so0018	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	53,8 m²	-	0,148 W/(m ² K)	0,160 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0155	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,9 m	0,498 W/K	6,2 %
pt0163	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,0 m	0,132 W/K	1,7 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.053 - Laboratorio M

Elemento disperdente		Area	Or	U	U'
pa0217	ME01 - EST - 305 - Parete perimetrale in cartongesso	18,7 m²	N	0,124 W/(m ² K)	0,407 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0217	Me01a - Parete - spallette serramento	0,200 W/(mK)	13,1 m	2,626 W/K	77,8 %
pt0096	Me01a - Parete solaio	0,612 W/(mK)	3,6 m	2,202 W/K	65,2 %
pt0158	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,6 m	0,466 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pv0009	S08P - ZNR - 47 - Pavimento (porzione monopiano)	50,6 m ²	-	0,503 W/(m ² K)	0,547 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0096	Me01a - Parete solaio	0,612 W/(mK)	3,6 m	2,202 W/K	8,7 %

Element	o disperdente	Area	Or	U	U'
so0018	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	50,6 m²	=	0,148 W/(m ² K)	0,158 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0158	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,6 m	0,466 W/K	6,2 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.021 - Laboratorio di informatica

Elemento disperdente		Area	Or	U	U'
pa0216	ME01 - EST - 305 - Parete perimetrale in cartongesso	19,3 m²	N	0,124 W/(m ² K)	0,401 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0218	Me01a - Parete - spallette serramento	0,200 W/(mK)	13,1 m	2,626 W/K	76,2 %
pt0095	Me01a - Parete solaio	0,612 W/(mK)	3,7 m	2,247 W/K	65,2 %
pt0157	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,7 m	0,475 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
9000yq	S08P - ZNR - 47 - Pavimento (porzione	E1 6 m ²		0,503 W/(m ² K)	0,547 W/(m ² K)
pvuuus	monopiano)	51,6 m²	-	0,503 W/(III K)	0,547 VV/(III K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0095	Me01a - Parete solaio	0,612 W/(mK)	3,7 m	2,247 W/K	8,6 %

Element	o disperdente	Area	Or	U	U'
so0018	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	51,6 m ²	-	0,148 W/(m ² K)	0,158 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0157	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,7 m	0,475 W/K	6,2 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.030 - Aula 09

Element	Elemento disperdente		Or	U	U'
pa0215	ME01 - EST - 305 - Parete perimetrale in cartongesso	21,4 m²	N	0,124 W/(m ² K)	0,353 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0219	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	64,2 %
pt0030	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0094	Me01a - Parete solaio	0,612 W/(mK)	3,7 m	2,280 W/K	65,2 %
pt0156	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,7 m	0,482 W/K	13,8 %

Element	Elemento disperdente		Or	U	U'
pa0245	ME01 - EST - 305 - Parete perimetrale in cartongesso	24,0 m ²	W	0,124 W/(m ² K)	0,293 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0220	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	43,7 %
pt0030	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0116	Me01a - Parete solaio	0,612 W/(mK)	3,6 m	2,215 W/K	65,2 %
pt0178	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,6 m	0,468 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pv0009	S08P - ZNR - 47 - Pavimento (porzione monopiano)	52,2 m ²	-	0,503 W/(m ² K)	0,589 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0094	Me01a - Parete solaio	0,612 W/(mK)	3,7 m	2,280 W/K	8,7 %
pt0116	Me01a - Parete solaio	0,612 W/(mK)	3,6 m	2,215 W/K	8,4 %

Element	o disperdente	Area	Or	U	U'
so0018	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	52,2 m ²	-	0,148 W/(m ² K)	0,167 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0156	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,7 m	0,482 W/K	6,2 %
pt0178	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,6 m	0,468 W/K	6,0 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.028 - Passaggio impianti

Element	o disperdente	Area	Or	U	U'
pa0247	ME01 - EST - 305 - Parete perimetrale in	6.1 m ²	W	0.124 W/(m ² K)	0,222 W/(m ² K)
pa0247	cartongesso	0,1111	VV	0,124 VV/(III K)	0,222 VV/(III K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0118	Me01a - Parete solaio	0,612 W/(mK)	0,8 m	0,495 W/K	65,2 %
pt0180	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,8 m	0,105 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pv0009	S08P - ZNR - 47 - Pavimento (porzione monopiano)	9,2 m²	-	0,503 W/(m ² K)	0,557 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0118	Me01a - Parete solaio	0,612 W/(mK)	0,8 m	0,495 W/K	10,7 %

Element	o disperdente	Area	Or	U	U'
so0018	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	9,2 m²	-	0,148 W/(m ² K)	0,160 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0180	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0.8 m	0.105 W/K	7,6 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.029 - Infermeria

Elemento disperdente		Area	Or	U	U'
pa0248	ME01 - EST - 305 - Parete perimetrale in cartongesso	9,8 m²	W	0,124 W/(m ² K)	0,361 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0221	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,8 m	1,163 W/K	79,9 %
pt0119	Me01a - Parete solaio	0,612 W/(mK)	1,6 m	0,949 W/K	65,2 %
pt0181	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,6 m	0,201 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pv0009	S08P - ZNR - 47 - Pavimento (porzione monopiano)	17,9 m²	-	0,503 W/(m ² K)	0,556 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0119	Me01a - Parete solaio	0,612 W/(mK)	1,6 m	0,949 W/K	10,5 %

Element	o disperdente	Area	Or	U	U'
so0018	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	17,9 m²	-	0,148 W/(m ² K)	0,160 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0181	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,6 m	0,201 W/K	7,5 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.027 - Aula 08

Element	Elemento disperdente		Or	U	U'
pa0241	ME01 - EST - 305 - Parete perimetrale in cartongesso	27,7 m ²	S	0,124 W/(m ² K)	0,280 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0222	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	38,5 %
pt0039	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0040	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0112	Me01a - Parete solaio	0,612 W/(mK)	4,1 m	2,512 W/K	65,2 %
pt0174	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	4,1 m	0,531 W/K	13,8 %

Element	Elemento disperdente		Or	U	U'
pa0246	ME01 - EST - 305 - Parete perimetrale in cartongesso	21,4 m²	W	0,124 W/(m ² K)	0,353 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0223	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	64,2 %
pt0039	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0117	Me01a - Parete solaio	0,612 W/(mK)	3,7 m	2,280 W/K	65,2 %
pt0179	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,7 m	0,482 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pa0344	ME01 - EST - 305 - Parete perimetrale in cartongesso	1,4 m²	E	0,124 W/(m ² K)	0,187 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0040	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0051	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	31,6 %
pt0146	Me01a - Parete solaio	0,612 W/(mK)	0,2 m	0,116 W/K	65,2 %
pt0208	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,2 m	0,024 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pv0009	S08P - ZNR - 47 - Pavimento (porzione monopiano)	57,0 m ²	-	0,503 W/(m ² K)	0,589 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0112	Me01a - Parete solaio	0,612 W/(mK)	4,1 m	2,512 W/K	8,8 %
pt0117	Me01a - Parete solaio	0,612 W/(mK)	3,7 m	2,280 W/K	7,9 %
pt0146	Me01a - Parete solaio	0,612 W/(mK)	0,2 m	0,116 W/K	0,4 %

Elemento disperdente		Area	Or	U	U'
so0018	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	56,0 m²	-	0,148 W/(m ² K)	0,167 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0174	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	4,1 m	0,531 W/K	6,4 %
pt0179	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,7 m	0,482 W/K	5,8 %
pt0208	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,2 m	0,024 W/K	0,3 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.026 - Aula 07

Element	Elemento disperdente		Or	U	U'
pa0242	ME01 - EST - 305 - Parete perimetrale in cartongesso	21,0 m ²	S	0,124 W/(m ² K)	0,382 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0224	Me01a - Parete - spallette serramento	0,200 W/(mK)	13,1 m	2,626 W/K	71,7 %
pt0041	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0113	Me01a - Parete solaio	0,612 W/(mK)	3,9 m	2,387 W/K	65,2 %
pt0175	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,9 m	0,505 W/K	13,8 %

Element	Elemento disperdente		Or	U	U'
pa0343	ME01 - EST - 305 - Parete perimetrale in cartongesso	1,4 m ²	W	0,124 W/(m ² K)	0,187 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0041	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0050	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	31,6 %
pt0145	Me01a - Parete solaio	0,612 W/(mK)	0,2 m	0,116 W/K	65,2 %
pt0207	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,2 m	0,024 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pv0009	S08P - ZNR - 47 - Pavimento (porzione monopiano)	53,5 m ²	-	0,503 W/(m ² K)	0,550 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0113	Me01a - Parete solaio	0,612 W/(mK)	3,9 m	2,387 W/K	8,9 %
pt0145	Me01a - Parete solaio	0,612 W/(mK)	0,2 m	0,116 W/K	0,4 %

Element	o disperdente	Area	Or	U	U'
so0019	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	53,5 m²	-	0,148 W/(m ² K)	0,158 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0175	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,9 m	0,505 W/K	6,4 %
pt0207	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,2 m	0,024 W/K	0,3 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.025 - Aula 06

Element	o disperdente	Area	Or	U	U'
pa0243	ME01 - EST - 305 - Parete perimetrale in cartongesso	14,0 m ²	S	0,124 W/(m ² K)	0,469 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0225	Me01a - Parete - spallette serramento	0,200 W/(mK)	13,1 m	2,626 W/K	94,1 %
pt0114	Me01a - Parete solaio	0,612 W/(mK)	3,0 m	1,820 W/K	65,2 %
pt0176	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,0 m	0,385 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pa0244	ME01 - EST - 305 - Parete perimetrale in cartongesso	17,7 m ²	S	0,124 W/(m ² K)	0,418 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0226	Me01a - Parete - spallette serramento	0,200 W/(mK)	13,1 m	2,626 W/K	80,9 %
pt0115	Me01a - Parete solaio	0,612 W/(mK)	3,5 m	2,118 W/K	65,2 %
pt0177	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,5 m	0,448 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pv0009	S08P - ZNR - 47 - Pavimento (porzione monopiano)	50,2 m ²	-	0,503 W/(m ² K)	0,582 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0114	Me01a - Parete solaio	0,612 W/(mK)	3,0 m	1,820 W/K	7,2 %
pt0115	Me01a - Parete solaio	0,612 W/(mK)	3,5 m	2,118 W/K	8,4 %

Element	o disperdente	Area	Or	U	U'
so0019	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	53,2 m ²	-	0,148 W/(m ² K)	0,164 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0176	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,0 m	0,385 W/K	4,9 %
pt0177	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,5 m	0,448 W/K	5,7 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.022 - Deposito

Elemento disperdente		Area	Or	U	U'
pa0314	ME01 - EST - 305 - Parete perimetrale in cartongesso	2,1 m ²	S	0,124 W/(m ² K)	0,249 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0142	Me01a - Parete solaio	0,612 W/(mK)	0,3 m	0,168 W/K	65,2 %
pt0204	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,3 m	0,036 W/K	13,8 %
pt0042	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	21,7 %

Element	o disperdente	Area	Or	U	U'
so0019	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	18,1 m²	=	0,148 W/(m ² K)	0,150 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0204	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,3 m	0,036 W/K	1,3 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.033 - Aula 12

Element	o disperdente	Area	Or	U	U'
pa0234	ME01 - EST - 305 - Parete perimetrale in cartongesso	22,1 m ²	E	0,124 W/(m ² K)	0,349 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0227	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	62,6 %
pt0036	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0106	Me01a - Parete solaio	0,612 W/(mK)	3,8 m	2,340 W/K	65,2 %
pt0168	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,8 m	0,495 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pa0237	ME01 - EST - 305 - Parete perimetrale in cartongesso	25,1 m ²	N	0,124 W/(m ² K)	0,290 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0228	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	42,0 %
pt0036	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0109	Me01a - Parete solaio	0,612 W/(mK)	3,8 m	2,301 W/K	65,2 %
pt0171	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,8 m	0,487 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0023	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	55,8 m²	=	0,148 W/(m ² K)	0,166 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0168	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,8 m	0,495 W/K	6,0 %
pt0171	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,8 m	0,487 W/K	5,9 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.032 - Aula 11

Element	Elemento disperdente		Or	U	U'
pa0233	ME01 - EST - 305 - Parete perimetrale in cartongesso	19,8 m²	E	0,124 W/(m ² K)	0,369 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0229	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	68,2 %
pt0105	Me01a - Parete solaio	0,612 W/(mK)	3,5 m	2,149 W/K	65,2 %
pt0167	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,5 m	0,454 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0023	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	49,1 m²	-	0,148 W/(m ² K)	0,158 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0167	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,5 m	0,454 W/K	6,2 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.031 - Aula 10

Element	Elemento disperdente		Or	U	U'
pa0251	ME01 - EST - 305 - Parete perimetrale in cartongesso	19,0 m²	W	0,124 W/(m ² K)	0,378 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0230	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	70,1 %
pt0042	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	1,7 %
pt0122	Me01a - Parete solaio	0,612 W/(mK)	3,4 m	2,089 W/K	65,2 %
pt0184	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,4 m	0,442 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0019	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	48,8 m²	-	0,148 W/(m ² K)	0,158 W/(m ² K)
	Ponte termico associato	Ψ	Lunghozza	ω * L	Incremente
	FOITIE LETTIICO associato	Ψ	Lunghezza	Ψ∟	Incremento

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.015 - Aula 03

Elemento disperdente		Area	Or	U	U'
pa0249	ME01 - EST - 305 - Parete perimetrale in cartongesso	20,3 m ²	W	0,124 W/(m ² K)	0,365 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0231	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	66,7 %
pt0120	Me01a - Parete solaio	0,612 W/(mK)	3,6 m	2,194 W/K	65,2 %
pt0182	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,6 m	0,464 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0019	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	49,9 m²	-	0,148 W/(m ² K)	0,158 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0182	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,6 m	0,464 W/K	6,3 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.034.35 - Bagno personale M.

Element	o disperdente	Area	Or	U	U'
pa0219	ME01 - EST - 305 - Parete perimetrale in	4.2 m ²	N	0,124 W/(m ² K)	0.443 W/(m ² K)
pa0213	cartongesso	4,2 111	IN	0,124 VV/(III K)	0,443 W/(III K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0247	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	123,4 %
pt0032	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	8,8 %
pt0098	Me01a - Parete solaio	0,612 W/(mK)	0,7 m	0,413 W/K	65,2 %
pt0160	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,7 m	0,087 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0022	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	3,8 m²	-	0,149 W/(m ² K)	0,172 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0160	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,7 m	0,087 W/K	15,3 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.036.37 - Antibagno personale F.

Element	Elemento disperdente		Or	U	U'
pa0220	ME01 - EST - 305 - Parete perimetrale in cartongesso	5,3 m ²	N	0,124 W/(m ² K)	0,366 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0250	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	101,1 %
pt0033	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0099	Me01a - Parete solaio	0,612 W/(mK)	0,8 m	0,505 W/K	65,2 %
pt0161	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,8 m	0,107 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0022	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	4,1 m ²	-	0,149 W/(m ² K)	0,175 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0161	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,8 m	0,107 W/K	17,4 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.038.39.40.41.42.43 - Bagno alunni F.2

	duoid on andrea contession of Lond State a Lie mentality in the state of Lie and Lie a						
Elemen	to disperdente	Area	Or	U	U'		
pa0221	ME01 - EST - 305 - Parete perimetrale in cartongesso	13,6 m²	N	0,124 W/(m ² K)	0,406 W/(m ² K)		
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento		
pt0259	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	38,5 %		
pt0260	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	38,5 %		
pt0261	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	38,5 %		
pt0033	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %		
pt0100	Me01a - Parete solaio	0,612 W/(mK)	2,2 m	1,324 W/K	65,2 %		
pt0162	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,2 m	0,280 W/K	13,8 %		

Element	o disperdente	Area	Or	U	U'
so0022	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	11,0 m ²	-	0,149 W/(m ² K)	0,174 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0162	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,2 m	0,280 W/K	17,1 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.044.45.46.47.48.49 - WC M2.1

Element	to disperdente	Area	Or	U	U'
pa0349	ME01 - EST - 305 - Parete perimetrale in cartongesso	14,6 m ²	N	0,124 W/(m ² K)	0,401 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0262	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	36,4 %
pt0263	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	36,4 %
pt0264	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	36,4 %
pt0148	Me01a - Parete solaio	0,612 W/(mK)	2,3 m	1,402 W/K	65,2 %
pt0210	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,3 m	0,296 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0022	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	11,0 m ²	-	0,149 W/(m ² K)	0,176 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0210	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,3 m	0,296 W/K	18,0 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.050.51 - Bagno disabili

Element	Elemento disperdente		Or	U	U'
pa0218	ME01 - EST - 305 - Parete perimetrale in cartongesso	8,1 m ²	N	0,124 W/(m ² K)	0,209 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0031	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0097	Me01a - Parete solaio	0,612 W/(mK)	1,1 m	0,656 W/K	65,2 %
pt0159	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,1 m	0,139 W/K	13,8 %

Element	Elemento disperdente		Or	U	U'
pa0230	ME01 - EST - 305 - Parete perimetrale in cartongesso	9,0 m ²	E	0,124 W/(m ² K)	0,216 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0031	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0034	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	5,0 %
pt0102	Me01a - Parete solaio	0,612 W/(mK)	1,2 m	0,730 W/K	65,2 %
pt0164	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,2 m	0,154 W/K	13,8 %

Element	to disperdente	Area	Or	U	U'
so0022	S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40	5,5 m ²	-	0,149 W/(m ² K)	0,202 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0159	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,1 m	0,139 W/K	17,0 %
					18,9 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.018 - Connettivo

Element	o disperdente	Area	Or	U	U'
pa0236	ME01 - EST - 305 - Parete perimetrale in	24.6 m ²	E	0,124 W/(m ² K)	0,376 W/(m ² K)
pa0230	cartongesso	24,0 111		U, 124 VV/(III K)	0,576 W/(III K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0266	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	32,5 %
pt0267	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	32,5 %
pt0268	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	32,5 %
pt0108	Me01a - Parete solaio	0,612 W/(mK)	3,8 m	2,295 W/K	65,2 %
pt0170	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,8 m	0,485 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pa0238	ME01 - EST - 305 - Parete perimetrale in cartongesso	2,2 m ²	N	0,124 W/(m ² K)	0,173 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0037	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0110	Me01a - Parete solaio	0,612 W/(mK)	0,3 m	0,174 W/K	65,2 %
pt0172	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,3 m	0,037 W/K	13,8 %

Element	Elemento disperdente		Or	U	U'
pa0239	ME01 - EST - 305 - Parete perimetrale in cartongesso	0,9 m ²	W	0,124 W/(m ² K)	0,169 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0037	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0038	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	47,8 %
pt0111	Me01a - Parete solaio	0,612 W/(mK)	0,1 m	0,076 W/K	65,2 %
pt0173	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,1 m	0,016 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pa0345	ME01 - EST - 305 - Parete perimetrale in cartongesso	9,9 m²	S	0,124 W/(m ² K)	0,901 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0269	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	61,5 %
pt0270	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	61,5 %
pt0271	Me01a - Parete - spallette serramento	0,200 W/(mK)	8,4 m	1,684 W/K	57,4 %
pt0051	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	1,9 %
pt0050	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	1,9 %
pt0147	Me01a - Parete solaio	0,612 W/(mK)	3,1 m	1,915 W/K	65,2 %
pt0209	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,1 m	0,405 W/K	13,8 %

Elemen	to disperdente	Area	Or	U	U'
pa0351	ME01 - EST - 305 - Parete perimetrale in cartongesso	7,9 m²	N	0,124 W/(m ² K)	0,525 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0272	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	114,4 %
pt0034	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	3,5 %
pt0038	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	3,5 %
pt0149	Me01a - Parete solaio	0,612 W/(mK)	1,7 m	1,029 W/K	65,2 %
pt0211	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,7 m	0,217 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
so0019	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	7,0 m ²	-	0,148 W/(m ² K)	0,314 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0170	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,8 m	0,485 W/K	46,7 %
pt0172	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,3 m	0,037 W/K	3,5 %
pt0173	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,1 m	0,016 W/K	1,6 %
pt0209	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,1 m	0,405 W/K	38,9 %
pt0211	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	1,7 m	0,217 W/K	20,9 %

Scuola S.Andrea Concesio - 05 Zona Scuola Elementare P1 - E.P1.028 - Deposito

Element	Elemento disperdente		Or	U	U'
pa0387	ME01 - EST - 305 - Parete perimetrale in cartongesso	6,1 m ²	E	0,124 W/(m ² K)	0,365 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0273	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	90,4 %
pt0151	Me01a - Parete solaio	0,612 W/(mK)	0,9 m	0,564 W/K	65,2 %
pt0213	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	0,9 m	0,119 W/K	13,8 %

Element	o disperdente	Area	Or	U	U'
pv0024	S06Pc - EST - 580 - Pavimento VS Esterno	6,2 m ²	-	0,252 W/(m ² K)	0,343 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0151	Me01a - Parete solaio	0,612 W/(mK)	0,9 m	0,564 W/K	36,0 %

Element	o disperdente	Area	Or	U	U'
so0028	S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95	13,8 m²	-	0,148 W/(m ² K)	0,157 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento

Scuola S.Andrea Concesio - 03 Zona Scuola Elementare PT - E.PT.014 - Aula 02

Element	to disperdente	Area	Or	U	U'
pa0071	ME01 - EST - 305 - Parete perimetrale in cartongesso	20,4 m ²	W	0,124 W/(m ² K)	0,343 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0090	Ponte termico associato Me01a - Parete - spallette serramento	Ψ 0,200 W/(mK)	Lunghezza 11,2 m	ψ * L 2,245 W/K	Incremento 66,7 %

Scuola S.Andrea Concesio - 03 Zona Scuola Elementare PT - E.PT.013 - Aula 01

Element	o disperdente	Area	Or	U	U'
pa0069	ME01 - EST - 305 - Parete perimetrale in cartongesso	20,9 m²	W	0,124 W/(m ² K)	0,334 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0091	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	65,3 %
pt0014	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0058	Me01a - Parete collegamento setti	0,616 W/(mK)	3,7 m	2,264 W/K	65,9 %

Element	Elemento disperdente		Or	U	U'
pa0072	ME01 - EST - 305 - Parete perimetrale in cartongesso	0,9 m²	N	0,124 W/(m ² K)	0,106 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0014	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0011	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	49,7 %
pt0061	Me01a - Parete collegamento setti	0,616 W/(mK)	0,1 m	0,034 W/K	30,3 %

Scuola S.Andrea Concesio - 03 Zona Scuola Elementare PT - E.PT.016 - Aula 04

Element	o disperdente	Area	Or	U	U'
pa0074	ME01 - EST - 305 - Parete perimetrale in cartongesso	21,0 m ²	E	0,124 W/(m ² K)	0,343 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0094	Ponte termico associato Me01a - Parete - spallette serramento	Ψ 0,200 W/(mK)	Lunghezza 11,2 m	ψ * L 2,245 W/K	Incremento 65,1 %

Scuola S.Andrea Concesio - 03 Zona Scuola Elementare PT - E.PT.015 - Aula 15

Element	Elemento disperdente		Or	U	U'
pa0047	ME01 - EST - 305 - Parete perimetrale in cartongesso	14,6 m ²	N	0,124 W/(m ² K)	0,202 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0009	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	3,1 %
pt0010	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0052	Me01a - Parete collegamento setti	0,616 W/(mK)	1,9 m	1,192 W/K	65,9 %

Element	Elemento disperdente		Or	U	U'
pa0073	ME01 - EST - 305 - Parete perimetrale in cartongesso	23,0 m ²	E	0,124 W/(m ² K)	0,323 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0095	Me01a - Parete - spallette serramento	0,200 W/(mK)	11,2 m	2,245 W/K	60,8 %
pt0010	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0062	Me01a - Parete collegamento setti	0,616 W/(mK)	3,9 m	2,433 W/K	65,9 %

Scuola S.Andrea Concesio - 03 Zona Scuola Elementare PT - E.PT.001 - Connettivo

Element	Elemento disperdente		Or	U	U'
pa0048	ME01 - EST - 305 - Parete perimetrale in cartongesso	6,3 m ²	E	0,124 W/(m ² K)	0,907 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0096	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	90,6 %
pt0097	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	90,6 %
pt0009	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	2,8 %
pt0053	Me01a - Parete collegamento setti	0,616 W/(mK)	2,1 m	1,311 W/K	65,9 %

Element	o disperdente	Area	Or	U	U'
pa0080	ME01 - EST - 305 - Parete perimetrale in	14.7 m²		0.124 W/(m ² K)	0,202 W/(m ² K)
paudou	cartongesso	14,7 111	3	0,124 W/(III K)	0,202 VV/(III K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0017	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0069	Me01a - Parete collegamento setti	0,616 W/(mK)	1,9 m	1,195 W/K	65,9 %
pt0013	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	3,1 %

Element	to disperdente	Area	Or	U	U'
pa0081	ME01 - EST - 305 - Parete perimetrale in cartongesso	25,6 m ²	E	0,124 W/(m ² K)	0,392 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0098	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	30,1 %
pt0099	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	30,1 %
pt0100	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	30,1 %
pt0101	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,7 m	1,143 W/K	30,1 %
pt0017	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0018	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0070	Me01a - Parete collegamento setti	0,616 W/(mK)	4,1 m	2,498 W/K	65,9 %

Elemento disperdente		Area	Or	U	U'
pa0082	ME01 - EST - 305 - Parete perimetrale in cartongesso	9,7 m ²	N	0,124 W/(m ² K)	0,200 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0018	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0019	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	4,6 %
pt0071	Me01a - Parete collegamento setti	0,616 W/(mK)	1,3 m	0,792 W/K	65,9 %

Scuola S.Andrea Concesio - 03 Zona Scuola Elementare PT - E.PT.004.06.07 - Bagno alunni F.1

Elemento disperdente		Area	Or	U	U'
pa0049	ME02 - EST - 440 - Parete perimetrale blocco bagni in C.A.	10,6 m²	W	0,225 W/(m ² K)	0,480 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0102	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	28,0 %
pt0103	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	28,0 %
pt0054	Me01a - Parete collegamento setti	0,616 W/(mK)	1,8 m	1,134 W/K	40,6 %

Scuola S.Andrea Concesio - 03 Zona Scuola Elementare PT - E.PT.008.09.10 - Bagno alunni M.1

Element	o disperdente	Area	Or	U	U'
pa0052	ME02 - EST - 440 - Parete perimetrale blocco bagni in C.A.	12,2 m ²	W	0,225 W/(m ² K)	0,452 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0104	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	24,8 %
pt0105	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	24,8 %
pt0011	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	1,8 %
pt0055	Me01a - Parete collegamento setti	0,616 W/(mK)	1,9 m	1,142 W/K	36,3 %

Scuola S.Andrea Concesio - 03 Zona Scuola Elementare PT - E.PT.002 - Presidio operatore

Element	o disperdente	Area	Or	U	U'
pa0064	ME01 - EST - 305 - Parete perimetrale in	3.5 m ²	Е	0,124 W/(m ² K)	0.801 W/(m ² K)
pa0004	cartongesso	3,3 111		0,124 VV/(III K)	0,001 VV /(III K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0106	Me01a - Parete - spallette serramento	0,200 W/(mK)	8,4 m	1,684 W/K	180,7 %
pt0013	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	6,0 %
pt0057	Me01a - Parete collegamento setti	0,616 W/(mK)	1,0 m	0,614 W/K	65,9 %

Scuola S.Andrea Concesio - 03 Zona Scuola Elementare PT - E.PT.020 - Sala insegnanti

Element	o disperdente	Area	Or	U	U'
pa0070	ME01 - EST - 305 - Parete perimetrale in cartongesso	18,3 m²	W	0,124 W/(m ² K)	0,359 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0113	Ponte termico associato Me01a - Parete - spallette serramento	Ψ 0,200 W/(mK)	Lunghezza 11,2 m	ψ * L 2,245 W/K	Incremento 72,2 %

Scuola S.Andrea Concesio - 02 Zona Mensa - R.PT.010 - Mensa

Elemento disperdente		Area	Or	U	U'
pa0149	ME01 - EST - 305 - Parete perimetrale in cartongesso	2,0 m ²	E	0,124 W/(m ² K)	1,081 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0127	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	254,3 %
pt0019	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	9,6 %
pt0079	Me01a - Parete collegamento setti	0,616 W/(mK)	0,6 m	0,384 W/K	65,9 %

Element	o disperdente	Area	Or	U	U'
pa0150	ME01 - EST - 305 - Parete perimetrale in cartongesso	6,8 m²	S	0,124 W/(m ² K)	0,423 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0128	Me01a - Parete - spallette serramento	0,200 W/(mK)	6,6 m	1,323 W/K	114,8 %
pt0023	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0024	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	4,8 %
pt0080	Me01a - Parete collegamento setti	0,616 W/(mK)	1,2 m	0,759 W/K	65,9 %

Element	o disperdente	Area	Or	U	U'
pa0155	ME01 - EST - 305 - Parete perimetrale in cartongesso	3,7 m²	S	0,124 W/(m ² K)	0,331 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0082	Me01a - Parete collegamento setti	0,616 W/(mK)	1,2 m	0,760 W/K	166,9 %

Element	o disperdente	Area	Or	U	U'
pa0156	ME01 - EST - 305 - Parete perimetrale in cartongesso	2,0 m ²	S	0,124 W/(m ² K)	1,352 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0130	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	212,0 %
pt0083	Me01a - Parete collegamento setti	0,616 W/(mK)	1,1 m	0,664 W/K	78,0 %

Element	o disperdente	Area	Or	U	U'
pa0157	ME01 - EST - 305 - Parete perimetrale in	2,1 m ²	c	0.124 W/(m ² K)	1,302 W/(m ² K)
pa0137	cartongesso	2,1111	3	0,124 VV/(III K)	1,302 VV/(III K)

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0131	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,2 m	1,844 W/K	205,2 %
pt0084	Me01a - Parete collegamento setti	0,616 W/(mK)	1,1 m	0,664 W/K	73,8 %

Element	o disperdente	Area	Or	U	U'
pa0158	ME01 - EST - 305 - Parete perimetrale in cartongesso	3,4 m²	E	0,124 W/(m ² K)	0,853 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0132	Ponte termico associato Me01a - Parete - spallette serramento	Ψ 0,200 W/(mK)	Lunghezza 9,0 m	ψ * L 1,804 W/K	Incremento 176,4 %

Element	o disperdente	Area	Or	U	U'
pa0159	ME01 - EST - 305 - Parete perimetrale in cartongesso	2,1 m ²	E	0,124 W/(m ² K)	1,024 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0133	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	250,5 %
pt0086	Me01a - Parete collegamento setti	0,616 W/(mK)	0,6 m	0,390 W/K	65,9 %

Elemento disperdente		Area	Or	U	U'
pa0160	ME01 - EST - 305 - Parete perimetrale in cartongesso	3,9 m²	E	0,124 W/(m ² K)	0,660 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0134	Me01a - Parete - spallette serramento	0,200 W/(mK)	7,4 m	1,483 W/K	182,3 %
pt0024	Me01a - Angolo rientrante parete perimetrale	0,030 W/(mK)	1,9 m	0,056 W/K	6,9 %
pt0087	Me01a - Parete collegamento setti	0,616 W/(mK)	0,9 m	0,536 W/K	65,9 %

Element	o disperdente	Area	Or	U	U'
pa0164	ME01 - EST - 305 - Parete perimetrale in cartongesso	2,7 m ²	S	0,124 W/(m ² K)	0,819 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0135	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,2 m	1,844 W/K	191,4 %

Element	o disperdente	Area	Or	U	U'
pa0151	ME02+Mi04 - EST - 555 - Parete composta zona mensa	6,6 m²	E	0,133 W/(m ² K)	0,532 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0129	Me01a - Parete - spallette serramento	0,200 W/(mK)	9,0 m	1,804 W/K	118,2 %
pt0023	Me01a - Angolo sporgente parete perimetrale	-0,056 W/(mK)	1,9 m	-0,106 W/K	- %
pt0081	Me01a - Parete collegamento setti	0,616 W/(mK)	1,5 m	0,936 W/K	61,3 %

Element	o disperdente	Area	Or	U	U'
pa0161	ME02+Mi04 - EST - 555 - Parete composta zona mensa	8,8 m²	E	0,133 W/(m ² K)	0,215 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0088	Me01a - Parete collegamento setti	0,616 W/(mK)	1,2 m	0,716 W/K	61,3 %

Element	o disperdente	Area	Or	U	U'
pa0162	ME02+Mi04 - EST - 555 - Parete composta zona mensa	8,8 m²	E	0,133 W/(m ² K)	0,215 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0089	Me01a - Parete collegamento setti	0,616 W/(mK)	1,2 m	0,716 W/K	61,3 %

Scuola S.Andrea Concesio - 08 Palestra attività - P.20 - Palestra

Element	o disperdente	Area	Or	U	U'
pa0018	ME03 - EST - 402 - Parete blocco palestra nuova	48,5 m²	S	0,179 W/(m ² K)	0,186 W/(m ² K)
				4. 4	
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento

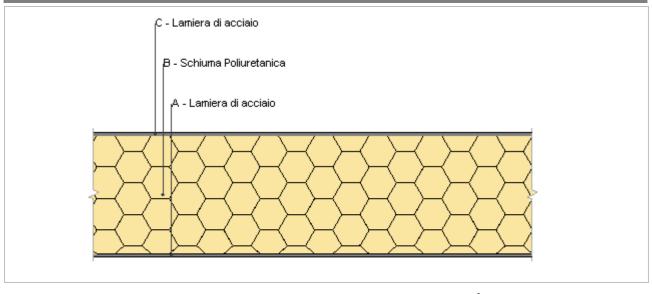
Element	o disperdente	Area	Or	U	U'
pa0024	ME03 - EST - 402 - Parete blocco palestra nuova	48,7 m²	S	0,179 W/(m ² K)	0,186 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0022	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2.9 m	0.375 W/K	4.3 %

Element	o disperdente	Area	Or	U	U'
pa0019	MUR02E - EST - 400 - Parete blocco palestra esistente	227,4 m ²	E	0,209 W/(m ² K)	0,339 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0041	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0042	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0043	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0044	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0045	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0046	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0047	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0048	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0049	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0050	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0051	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0052	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0053	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0054	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0055	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0056	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	2,1 %
pt0018	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	15,0 m	1,937 W/K	3,7 %
pt0029	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,709 W/K	3,3 %
pt0030	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,709 W/K	3,3 %
pt0031	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,709 W/K	3,3 %
pt0038	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	3,3 %
pt0039	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	3,3 %
pt0040	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	3,3 %

Elemento disperdente		Area	Or	U	U'
pa0020	MUR02E - EST - 400 - Parete blocco palestra esistente	149,9 m²	W	0,209 W/(m ² K)	0,337 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0057	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	3,2 %
pt0058	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	3,2 %
pt0059	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	3,2 %
pt0060	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	3,2 %
pt0061	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	3,2 %
pt0062	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	3,2 %
pt0063	Me01a - Parete - spallette serramento	0,200 W/(mK)	5,4 m	1,082 W/K	3,2 %
pt0019	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	9,5 m	1,231 W/K	3,7 %
pt0023	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	5,1 %
pt0024	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	5,1 %
pt0025	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	5,1 %
pt0032	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	5,1 %
pt0033	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	5,1 %
pt0034	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	5,1 %

Element	Elemento disperdente		Or	U	U'
pa0023	MUR02E - EST - 400 - Parete blocco palestra esistente	55,3 m²	S	0,209 W/(m ² K)	0,329 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0021	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,3 m	0,426 W/K	3,7 %
pt0026	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	9,1 m	1,037 W/K	9,0 %
pt0027	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	9,1 m	1,037 W/K	9,0 %
pt0028	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	9,1 m	1,037 W/K	9,0 %
pt0035	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	9,1 m	1,037 W/K	9,0 %
pt0036	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	9,1 m	1,037 W/K	9,0 %
pt0037	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	9,1 m	1,037 W/K	9,0 %

Elemento disperdente		Area	Or	U	U'
so0003	S11P - ZNR - 280 - Soffitto palestra	540,3 m ²	-	0,159 W/(m ² K)	0,219 W/(m ² K)

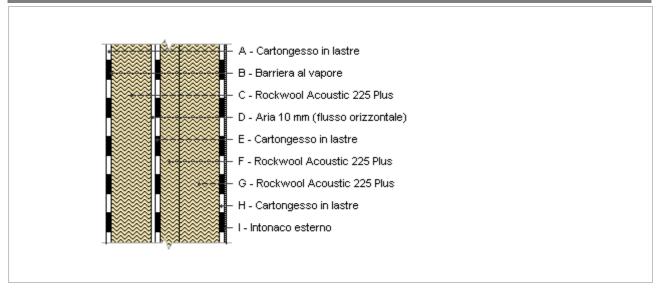

	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0017	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,9 m	0,374 W/K	0,4 %
pt0018	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	15,0 m	1,937 W/K	2,3 %
pt0019	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	9,5 m	1,231 W/K	1,4 %
pt0020	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	10,9 m	1,413 W/K	1,6 %
pt0021	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	3,3 m	0,426 W/K	0,5 %
pt0022	SS10P - Parete - solaio vs sottotetto	0,129 W/(mK)	2,9 m	0,375 W/K	0,4 %
pt0023	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	2,0 %
pt0024	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	2,0 %
pt0025	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	2,0 %
pt0026	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	9,1 m	1,037 W/K	1,2 %
pt0027	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	9,1 m	1,037 W/K	1,2 %
pt0028	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	9,1 m	1,037 W/K	1,2 %
pt0029	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,709 W/K	2,0 %
pt0030	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,709 W/K	2,0 %
pt0031	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,709 W/K	2,0 %
pt0032	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	2,0 %
pt0033	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	2,0 %
pt0034	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	2,0 %
pt0035	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	9,1 m	1,037 W/K	1,2 %
pt0036	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	9,1 m	1,037 W/K	1,2 %
pt0037	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	9,1 m	1,037 W/K	1,2 %
pt0038	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	2,0 %
pt0039	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	2,0 %
pt0040	Me01a - Parete - pavimento vs vespaio	0,114 W/(mK)	15,0 m	1,711 W/K	2,0 %

Scuola S.Andrea Concesio - 09 Servizi Auditorium - A.03.04.05.06 - WC Auditorium

Elemento disperdente		Area	Or	U	U'
pa0008	ME01 - EST - 305 - Parete perimetrale in cartongesso	20,0 m ²	N	0,124 W/(m ² K)	0,293 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0031	Me01a - Parete - spallette serramento	0,200 W/(mK)	3,9 m	0,782 W/K	30,2 %
pt0005	Me01a - Parete collegamento setti	0,616 W/(mK)	2,1 m	1,307 W/K	50,4 %
pt0006	Me01a - Parete solaio	0,612 W/(mK)	2,1 m	1,297 W/K	50,0 %

Elemento disperdente		Area	Or	U	U'
pv0002 S03Pa - ZNR - 540 - Pavimento solaio auditorium		19,2 m²	-	0,254 W/(m ² K)	0,322 W/(m ² K)
	Ponte termico associato	Ψ	Lunghezza	ψ * L	Incremento
pt0006	Me01a - Parete solaio	0,612 W/(mK)	2,1 m	1,297 W/K	26,5 %

CO01 - ZNR vs EST - 40 - Pannello sandwich



Spessore	42,0 mm	Trasmittanza	0,626 W/m ² K
Resistenza	1,599 m²K/W	Massa superf.	19 kg/m²
Tipologia	Copertura		
Descrizione			

Stratigrafia

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Lamiera di acciaio	1,0	80,000	0,000	7 870	0,46	999 999,0
В	Schiuma Poliuretanica	40,0	0,028	1,429	70	1,50	60,0
C	Lamiera di acciaio	1,0	80,000	0,000	7 870	0,46	999 999,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-
	TOTALE	42,0		1,599			

ME01 - EST - 305 - Parete perimetrale in cartongesso

Spessore	305,0 mm	Trasmittanza	0,124 W/m²K
Resistenza	8,074 m ² K/W	Massa superf.	56 kg/m²
Tipologia	Parete		
Descrizione			

Stratigrafia

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
	2636.1216116	S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Cartongesso in lastre	12,0	0,210	0,057	900	1,30	8,7
В	Barriera al vapore	0,5	0,400	0,001	360	1,50	20 000,0
С	Rockwool Acoustic 225 Plus	100,0	0,033	3,030	90	1,03	1,0
D	Aria 10 mm (flusso orizzontale)	10,0	0,070	0,143	1	1,00	1,0
Ε	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
F	Rockwool Acoustic 225 Plus	50,0	0,033	1,515	90	1,03	1,0
G	Rockwool Acoustic 225 Plus	100,0	0,033	3,030	90	1,03	1,0
Н	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
I	Intonaco esterno	7,5	0,900	0,008	1 800	1,00	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-
	TOTALE	305,0		8,074			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al contorno e dati climatici					
Comune	Concesio				
Tipo di calcolo	Classi di concentrazione				
Verso	Esterno				
Coeff. btr,x	1				
Volume	- m ³				
Classe edificio	Edifici con indice di affollamento non noto				
Produz. nota	- kg/h				

Mese	θі	φί	θе	фе	n
gennaio	20,0 °C	- %	2,3 °C	93,6 %	0,5 1/h
febbraio	20,0 °C	- %	2,8 °C	86,2 %	0,5 1/h
marzo	20,0 °C	- %	7,9 °C	74,6 %	0,5 1/h
aprile	20,0 °C	- %	11,4 °C	72,1 %	0,5 1/h
maggio	20,0 °C	- %	17,1 °C	66,5 %	0,5 1/h
giugno	20,0 °C	- %	20,4 °C	58,2 %	0,5 1/h
luglio	20,0 °C	- %	21,5 ℃	70,9 %	0,5 1/h
agosto	20,0 °C	- %	21,3 °C	70,5 %	0,5 1/h
settembre	20,0 °C	- %	17,7 °C	77,7 %	0,5 1/h
ottobre	20,0 °C	- %	12,3 °C	80,3 %	0,5 1/h
novembre	20,0 °C	- %	7,0 °C	92,5 %	0,5 1/h
dicembre	20,0 °C	- %	2,8 ℃	98,3 %	0,5 1/h

Condizione	θі	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	2,30 °C	674,40 Pa
ESTIVA	20,00 °C	1 665,90 Pa	21,50 °C	1 818,10 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 478,739 Pa.

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).

La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 478,739 Pa.

Verifica di formazione di muffe superficiali

Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	12,3 ℃	1147,91 Pa	373,35 Pa	1521,26 Pa	20 °C	65 %
novembre	7,0 °C	926,36 Pa	561,5 Pa	1487,86 Pa	20 °C	65 %
dicembre	2,8 °C	733,83 Pa	710,6 Pa	1444,43 Pa	20 °C	65 %
gennaio	2,3 °C	674,41 Pa	728,35 Pa	1402,76 Pa	20 °C	65 %
febbraio	2,8 °C	643,75 Pa	710,6 Pa	1354,35 Pa	20 °C	65 %
marzo	7,9 °C	794,1 Pa	529,55 Pa	1323,65 Pa	20 °C	65 %
aprile	11,4 °C	971,22 Pa	405,3 Pa	1376,52 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm			
ottobre	16,71°C	0,573			
novembre	16,36°C	0,7202			
dicembre	15,9°C	0,7615			
gennaio	15,44°C	0,7425			
febbraio	14,9°C	0,7032			
marzo	14,54°C	0,5487			
aprile	15,15°C	0,4357			

θe: temperatura esterna
Pe: pressione esterna
ΔP: variazione di pressione
Pi: pressione interna
θi: temperatura interna
φi: umidità relativa interna
θsi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,7615 (mese di Dicembre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1 402,8	1 354,4	1 323,6	1 376,5	1 499,2	1 478,8	1 864,8	1 839,3	1 753,9	1 521,3	1 487,9	1 444,4
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
Add-A	1 395,7	1 347,4	1 318,5	1 372,6	1 497,2	1 477,9	1 864,4	1 838,8	1 752,1	1 517,6	1 482,4	1 437,5
	2 242,7	2 245,3	2 272,1	2 290,7	2 321,3	2 339,1	2 345,1	2 344,0	2 324,5	2 295,5	2 267,4	2 245,3
A-B	715,4	683,7	823,9	994,0	1 307,7	1 397,8	1 820,7	1 788,5	1 582,4	1 168,9	958,0	773,8
	2 242,3	2 244,9	2 271,9	2 290,5	2 321,2	2 339,1	2 345,1	2 344,0	2 324,5	2 295,4	2 267,1	2 244,9
B-C	708,6	677,1	819,0	990,2	1 305,8	1 397,0	1 820,3	1 788,0	1 580,7	1 165,4	952,7	767,2
	1 476,4	1 496,2	1 712,1	1 875,7	2 171,4	2 360,6	2 426,8	2 414,7	2 204,8	1 919,9	1 672,1	1 496,2
C-D	707,9	676,4	818,5	989,9	1 305,6	1 396,9	1 820,2	1 787,9	1 580,6	1 165,1	952,2	766,5
	1 446,8	1 467,1	1 689,0	1 857,8	2 164,6	2 361,6	2 430,7	2 418,1	2 199,3	1 903,6	1 647,8	1 467,1
D-E	700,5	669,2	813,1	985,7	1 303,5	1 396,0	1 819,8	1 787,4	1 578,7	1 161,3	946,5	759,3
	1 434,6	1 455,1	1 679,5	1 850,5	2 161,7	2 362,1	2 432,4	2 419,5	2 197,0	1 896,8	1 637,8	1 455,1
E-F	697,1	665,9	810,6	983,9	1 302,6	1 395,6	1 819,5	1 787,2	1 577,9	1 159,5	943,9	756,0
	1 153,6	1 177,8	1 451,9	1 671,1	2 090,3	2 372,9	2 474,2	2 455,5	2 139,4	1 731,9	1 399,8	1 177,8
F-G	690,3	659,3	805,7	980,1	1 300,7	1 394,8	1 819,1	1 786,6	1 576,2	1 156,1	938,6	749,3
	732,6	758,8	1 076,5	1 357,4	1 953,7	2 394,7	2 559,9	2 529,1	2 028,1	1 439,3	1 013,2	758,8
G-H	682,9	652,1	800,3	975,9	1 298,6	1 394,0	1 818,6	1 786,1	1 574,3	1 152,3	932,9	742,1
	726,0	752,1	1 070,1	1 351,8	1 951,1	2 395,1	2 561,6	2 530,6	2 026,0	1 434,1	1 006,6	752,1
H-I	674,4	643,8	794,1	971,2	1 296,3	1 393,0	1 818,1	1 785,5	1 572,2	1 147,9	926,4	733,8
	725,0	751,2	1 069,2	1 351,1	1 950,7	2 395,2	2 561,8	2 530,8	2 025,7	1 433,3	1 005,7	751,2
I-Add	674,4	643,8	794,1	971,2	1 296,3	1 393,0	1 818,1	1 785,5	1 572,2	1 147,9	926,4	733,8
	720,6	746,7	1 064,9	1 347,3	1 949,0	2 395,4	2 562,9	2 531,8	2 024,2	1 429,8	1 001,3	746,7

Temperature

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,5	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
A-B	19,3	19,4	19,5	19,7	19,9	20,0	20,1	20,0	19,9	19,7	19,5	19,4
B-C	19,3	19,4	19,5	19,7	19,9	20,0	20,1	20,0	19,9	19,7	19,5	19,4
C-D	12,8	13,0	15,1	16,5	18,8	20,2	20,6	20,5	19,1	16,9	14,7	13,0
D-E	12,5	12,7	14,9	16,3	18,8	20,2	20,6	20,6	19,0	16,7	14,5	12,7
E-F	12,4	12,6	14,8	16,3	18,7	20,2	20,6	20,6	19,0	16,7	14,4	12,6
F-G	9,1	9,4	12,5	14,7	18,2	20,2	20,9	20,8	18,6	15,2	12,0	9,4
G-H	2,5	3,0	8,1	11,5	17,1	20,4	21,5	21,3	17,7	12,4	7,2	3,0
H-I	2,4	2,9	8,0	11,5	17,1	20,4	21,5	21,3	17,7	12,3	7,1	2,9
I-Add	2,4	2,9	8,0	11,4	17,1	20,4	21,5	21,3	17,7	12,3	7,1	2,9
Add-Esterno	2,3	2,8	7,9	11,4	17,1	20,4	21,5	21,3	17,7	12,3	7,0	2,8

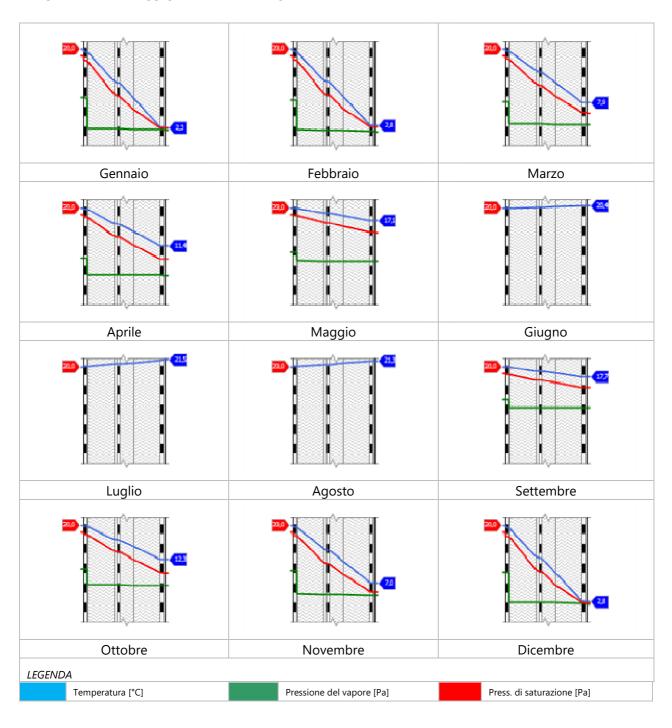
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B								-				
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente

Gc: 0,0000 kg/m²


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

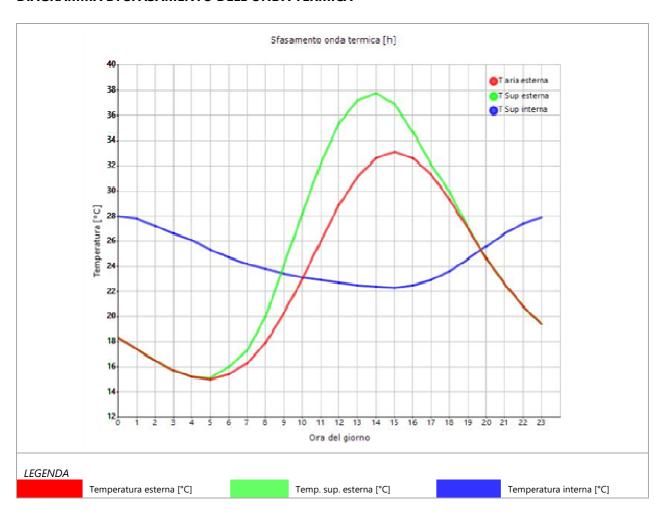
Quantità di vapore residuo Ma: 0,0000 kg/m²

Esito della verifica di condensa interstiziale: Condensa assente

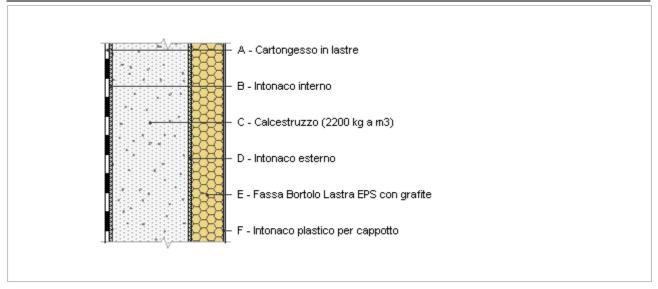
DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

Verifica di massa				
Massa della struttura per metro	o quadrato di superficie	56 kg/m²		
Valore minimo di massa superf	ficiale	230 kg/m²		
Esito della verifica di massa	Esito della verifica di massa OK			
Condizioni al contorno				
Comune	Concesio			
Orientamento	S			
Colorazione	Chiaro			
Mese massima insolazione	giugno			
Temperatura media nel mese c	li massima insolazione	20,4 °C		
Temperatura massima estiva		33,1 °C		
Escursione giorno più caldo dell'anno		18,1 °C		
Irradianza mensile massima sul piano orizzontale		284,72 W/m²		


Inerzia termica

Sfasamento dell'onda termica	10h 09'
Fattore di attenuazione	0,2515
Capacità termica interna C1	17,7 kJ/m²K
Capacità termica esterna C2	31,9 kJ/m²K
Ammettenza interna oraria	16,3 W/m ² K
Ammettenza interna	1,3 W/m ² K
Ammettenza esterna oraria	17,0 W/m ² K
Ammettenza esterna	2,3 W/m ² K
Trasmittanza periodica Y	0,031 W/m²K
Valore limite Ylim	0,100 W/m ² K
Classificazione normativa	
Esito della verifica di inerzia	OK


	Temperatura esterna	Irradiazione solare	Temp. sup. esterna	Temp interna
	giorno più caldo Te	giorno più caldo le	giorno più caldo Te,sup	giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	18,27	0,00	18,27	28,03
1:00	17,36	0,00	17,36	27,82
2:00	16,46	0,00	16,46	27,25
3:00	15,73	0,00	15,73	26,62
4:00	15,19	0,00	15,19	26,05
5:00	15,01	10,20	15,13	25,34
6:00	15,37	49,20	15,96	24,72
7:00	16,28	85,80	17,31	24,22
8:00	17,90	173,80	19,99	23,76
9:00	20,26	316,80	24,06	23,40
10:00	22,97	434,00	28,18	23,13
11:00	26,05	509,60	32,17	22,90
12:00	28,95	535,60	35,37	22,67
13:00	31,12	509,60	37,23	22,49
14:00	32,57	434,00	37,77	22,35
15:00	33,11	316,80	36,91	22,34
16:00	32,57	173,80	34,65	22,55
17:00	31,30	70,40	32,14	22,88
18:00	29,31	49,60	29,90	23,56

	1			
19:00	26,95	10,20	27,08	24,58
20:00	24,60	0,00	24,60	25,62
21:00	22,61	0,00	22,61	26,62
22:00	20,80	0,00	20,80	27,43
23:00	19,35	0,00	19,35	27,90

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA

ME02 - EST - 440 - Parete perimetrale blocco bagni in C.A.

Spessore	440,0 mm	Trasmittanza	0,225 W/m ² K
Resistenza	4,447 m ² K/W	Massa superf.	630 kg/m²
Tipologia	Parete		
Descrizione			

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
В	Intonaco interno	10,0	0,700	0,014	1 400	1,00	11,1
C	Calcestruzzo (2200 kg a m3)	280,0	1,650	0,170	2 200	1,00	70,0
D	Intonaco esterno	10,0	0,900	0,011	1 800	1,00	16,7
Е	Fassa Bortolo Lastra EPS con grafite	120,0	0,030	4,000	19	1,45	50,0
F	Intonaco plastico per cappotto	7,5	0,330	0,023	1 300	0,84	32,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-
	TOTALE	440,0		4,447			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al contorno e dati climatici						
Comune	Concesio					
Tipo di calcolo	Classi di concentrazione					
Verso	Esterno					
Coeff. btr,x	1					
Volume	- m ³					
Classe edificio	Edifici con indice di affollamento non noto					
Produz. nota	- kg/h					

Mese	θі	φί	θе	фе	n
gennaio	20,0 °C	- %	2,3 °C	93,6 %	0,5 1/h
febbraio	20,0 °C	- %	2,8 °C	86,2 %	0,5 1/h
marzo	20,0 °C	- %	7,9 °C	74,6 %	0,5 1/h
aprile	20,0 °C	- %	11,4 °C	72,1 %	0,5 1/h
maggio	20,0 °C	- %	17,1 °C	66,5 %	0,5 1/h
giugno	20,0 °C	- %	20,4 °C	58,2 %	0,5 1/h
luglio	20,0 °C	- %	21,5 ℃	70,9 %	0,5 1/h
agosto	20,0 °C	- %	21,3 °C	70,5 %	0,5 1/h
settembre	20,0 °C	- %	17,7 °C	77,7 %	0,5 1/h
ottobre	20,0 °C	- %	12,3 °C	80,3 %	0,5 1/h
novembre	20,0 °C	- %	7,0 °C	92,5 %	0,5 1/h
dicembre	20,0 °C	- %	2,8 ℃	98,3 %	0,5 1/h

Condizione	θі	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	2,30 °C	674,40 Pa
ESTIVA	20,00 °C	1 665,90 Pa	21,50 °C	1 818,10 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 484,014 Pa.

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).

La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 484,014 Pa.

Verifica di formazione di muffe superficiali

Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	12,3 ℃	1147,91 Pa	373,35 Pa	1521,26 Pa	20 °C	65 %
novembre	7,0 °C	926,36 Pa	561,5 Pa	1487,86 Pa	20 °C	65 %
dicembre	2,8 °C	733,83 Pa	710,6 Pa	1444,43 Pa	20 °C	65 %
gennaio	2,3 °C	674,41 Pa	728,35 Pa	1402,76 Pa	20 °C	65 %
febbraio	2,8 °C	643,75 Pa	710,6 Pa	1354,35 Pa	20 °C	65 %
marzo	7,9 °C	794,1 Pa	529,55 Pa	1323,65 Pa	20 °C	65 %
aprile	11,4 °C	971,22 Pa	405,3 Pa	1376,52 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm
ottobre	16,71°C	0,573
novembre	16,36°C	0,7202
dicembre	15,9°C	0,7615
gennaio	15,44°C	0,7425
febbraio	14,9°C	0,7032
marzo	14,54°C	0,5487
aprile	15,15°C	0,4357

θe: temperatura esterna
Pe: pressione esterna
ΔP: variazione di pressione
Pi: pressione interna
θi: temperatura interna
φi: umidità relativa interna
θsi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,7615 (mese di Dicembre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1 402,8	1 354,4	1 323,6	1 376,5	1 499,2	1 478,8	1 864,8	1 839,3	1 753,9	1 521,3	1 487,9	1 444,4
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
Add-A	1 400,8	1 352,4	1 322,2	1 375,4	1 498,7	1 478,5	1 864,7	1 839,2	1 753,4	1 520,2	1 486,3	1 442,5
	2 169,0	2 173,6	2 220,9	2 254,0	2 308,7	2 340,9	2 351,7	2 349,7	2 314,5	2 262,5	2 212,5	2 173,6
A-B	1 398,8	1 350,5	1 320,8	1 374,3	1 498,1	1 478,3	1 864,6	1 839,0	1 752,9	1 519,2	1 484,8	1 440,5
	2 161,5	2 166,3	2 215,7	2 250,2	2 307,4	2 341,1	2 352,4	2 350,3	2 313,5	2 259,1	2 206,9	2 166,3
B-C	790,4	756,9	878,4	1 035,8	1 328,6	1 406,6	1 825,5	1 794,0	1 601,1	1 207,4	1 015,8	847,0
	2 074,2	2 081,3	2 154,4	2 205,9	2 292,0	2 343,2	2 360,5	2 357,3	2 301,2	2 219,3	2 141,3	2 081,3
C-D	787,4	754,0	876,2	1 034,1	1 327,8	1 406,3	1 825,3	1 793,8	1 600,4	1 205,8	1 013,5	844,1
	2 068,6	2 075,8	2 150,4	2 203,0	2 291,0	2 343,4	2 361,0	2 357,8	2 300,4	2 216,7	2 137,1	2 075,8
D-E	678,8	648,0	797,3	973,6	1 297,5	1 393,5	1 818,4	1 785,8	1 573,3	1 150,1	929,7	738,1
	733,2	759,3	1 077,0	1 357,9	1 953,9	2 394,6	2 559,7	2 529,0	2 028,3	1 439,8	1 013,7	759,3
E-F	674,4	643,8	794,1	971,2	1 296,3	1 393,0	1 818,1	1 785,5	1 572,2	1 147,9	926,4	733,8
	728,6	754,7	1 072,6	1 354,0	1 952,1	2 394,9	2 560,9	2 530,0	2 026,8	1 436,1	1 009,2	754,7
F-Add	674,4	643,8	794,1	971,2	1 296,3	1 393,0	1 818,1	1 785,5	1 572,2	1 147,9	926,4	733,8
	720,6	746,7	1 064,9	1 347,3	1 949,0	2 395,4	2 562,9	2 531,8	2 024,2	1 429,8	1 001,3	746,7

Temperature

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,0	19,1	19,3	19,5	19,8	20,0	20,1	20,1	19,9	19,6	19,3	19,1
A-B	18,8	18,8	19,2	19,4	19,8	20,0	20,1	20,1	19,8	19,5	19,1	18,8
B-C	18,7	18,8	19,1	19,4	19,8	20,0	20,1	20,1	19,8	19,5	19,1	18,8
C-D	18,1	18,1	18,7	19,1	19,7	20,0	20,2	20,1	19,8	19,2	18,6	18,1
D-E	18,0	18,1	18,7	19,0	19,7	20,0	20,2	20,1	19,7	19,1	18,6	18,1
E-F	2,5	3,0	8,1	11,5	17,1	20,4	21,5	21,3	17,7	12,4	7,2	3,0
F-Add	2,5	3,0	8,0	11,5	17,1	20,4	21,5	21,3	17,7	12,4	7,1	3,0
Add-Esterno	2,3	2,8	7,9	11,4	17,1	20,4	21,5	21,3	17,7	12,3	7,0	2,8

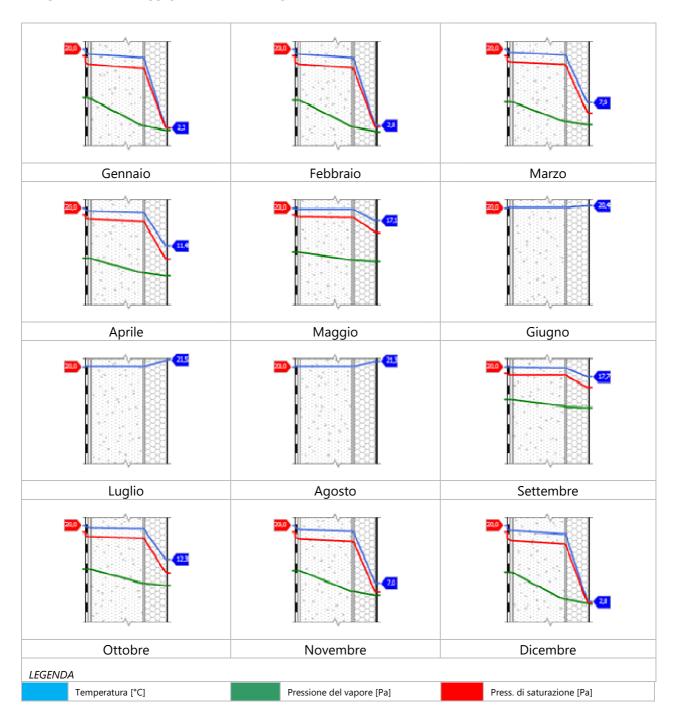
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B								-				
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente

Gc: 0,0000 kg/m²


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 kg/m²

Esito della verifica di condensa interstiziale: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

Massa della struttura per metro quadrato di superficie	630 kg/m ²
Valore minimo di massa superficiale	230 kg/m ²

Esito della verifica di massa OK

Condizioni al contorno

Verifica di massa

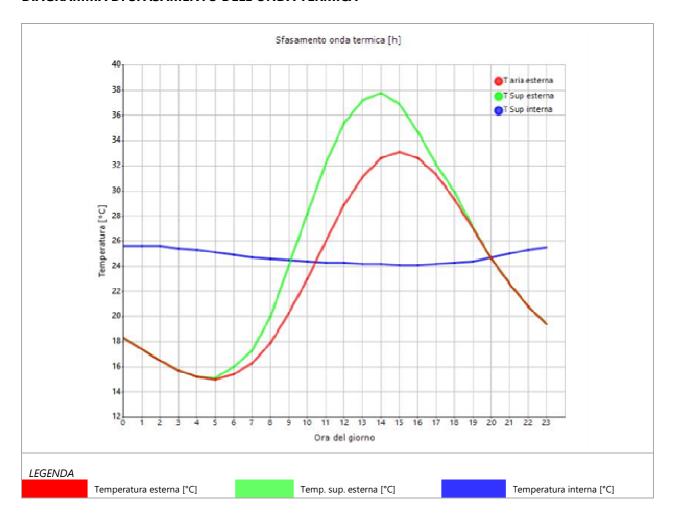
ComuneConcesioOrientamentoSColorazioneChiaroMese massima insolazionegiugno

Temperatura media nel mese di massima insolazione $20,4\,^{\circ}\text{C}$ Temperatura massima estiva $33,1\,^{\circ}\text{C}$

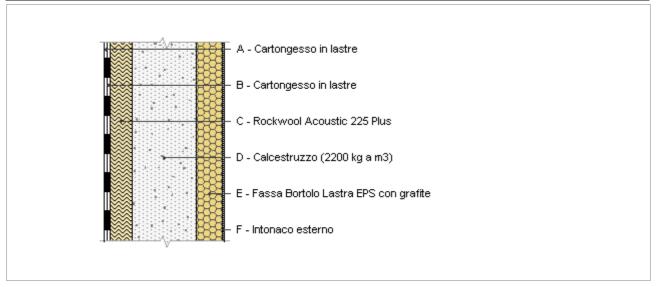
Escursione giorno più caldo dell'anno 18,1 °C Irradianza mensile massima sul piano orizzontale 284,72 W/m²

OK

Inerzia termica


Esito della verifica di inerzia

Sfasamento dell'onda termica 11h 07' Fattore di attenuazione 0,0666 Capacità termica interna C1 57,4 kJ/m²K 9,9 kJ/m²K Capacità termica esterna C2 12,8 W/m²K Ammettenza interna oraria Ammettenza interna 4,2 W/m²K 16,5 W/m²K Ammettenza esterna oraria Ammettenza esterna 0,7 W/m²K Trasmittanza periodica Y 0,015 W/m²K Valore limite Ylim 0,100 W/m²K Classificazione normativa


	Temperatura esterna	Irradiazione solare	Temp. sup. esterna	Temp interna
	giorno più caldo Te	giorno più caldo le	giorno più caldo Te,sup	giorno più caldo Ti
Ora	°C	W/m ²	°C	°C
0:00	18,27	0,00	18,27	25,59
1:00	17,36	0,00	17,36	25,63
2:00	16,46	0,00	16,46	25,57
3:00	15,73	0,00	15,73	25,42
4:00	15,19	0,00	15,19	25,25
5:00	15,01	10,20	15,13	25,10
6:00	15,37	49,20	15,96	24,91
7:00	16,28	85,80	17,31	24,75
8:00	17,90	173,80	19,99	24,62
9:00	20,26	316,80	24,06	24,50
10:00	22,97	434,00	28,18	24,40
11:00	26,05	509,60	32,17	24,33
12:00	28,95	535,60	35,37	24,27
13:00	31,12	509,60	37,23	24,21
14:00	32,57	434,00	37,77	24,16
15:00	33,11	316,80	36,91	24,12
16:00	32,57	173,80	34,65	24,12
17:00	31,30	70,40	32,14	24,17
18:00	29,31	49,60	29,90	24,26

19:00	26,95	10,20	27,08	24,44
20:00	24,60	0,00	24,60	24,71
21:00	22,61	0,00	22,61	24,99
22:00	20,80	0,00	20,80	25,25
23:00	19,35	0,00	19,35	25,47

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA

ME02+Mi04 - EST - 555 - Parete composta zona mensa

Spessore	555,0 mm	Trasmittanza	0,133 W/m ² K	
Resistenza	7,512 m ² K/W	Massa superf.	694 kg/m²	
Tipologia	Parete			
Descrizione				

Stratigrafia

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
	Descrizione	S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
В	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
С	Rockwool Acoustic 225 Plus	100,0	0,033	3,030	90	1,03	1,0
D	Calcestruzzo (2200 kg a m3)	300,0	1,650	0,182	2 200	1,00	70,0
E	Fassa Bortolo Lastra EPS con grafite	120,0	0,030	4,000	19	1,45	50,0
F	Intonaco esterno	10,0	0,900	0,011	1 800	1,00	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-
	TOTALE	555,0		7,512			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al co	Condizioni al contorno e dati climatici					
Comune	Concesio					
Tipo di calcolo	Classi di concentrazione					
Verso	Esterno					
Coeff. btr,x	1					
Volume	- m ³					
Classe edificio	Edifici con indice di affollamento non noto					
Produz. nota	- kg/h					

Mese	θі	φί	θе	фе	n
gennaio	20,0 °C	- %	2,3 °C	93,6 %	0,5 1/h
febbraio	20,0 °C	- %	2,8 °C	86,2 %	0,5 1/h
marzo	20,0 °C	- %	7,9 °C	74,6 %	0,5 1/h
aprile	20,0 °C	- %	11,4 °C	72,1 %	0,5 1/h
maggio	20,0 °C	- %	17,1 °C	66,5 %	0,5 1/h
giugno	20,0 °C	- %	20,4 °C	58,2 %	0,5 1/h
luglio	20,0 °C	- %	21,5 °C	70,9 %	0,5 1/h
agosto	20,0 °C	- %	21,3 °C	70,5 %	0,5 1/h
settembre	20,0 °C	- %	17,7 °C	77,7 %	0,5 1/h
ottobre	20,0 °C	- %	12,3 °C	80,3 %	0,5 1/h
novembre	20,0 °C	- %	7,0 °C	92,5 %	0,5 1/h
dicembre	20,0 °C	- %	2,8 °C	98,3 %	0,5 1/h

Condizione	θі	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	2,30 °C	674,40 Pa
ESTIVA	20.00 °C	1 665.90 Pa	21.50 °C	1 818.10 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 0 Pa.

- La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,010 kg/m² (rievaporabile durante il periodo estivo).
- La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 479,228 Pa.

Verifica di formazione di muffe superficiali

Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	12,3 °C	1147,91 Pa	373,35 Pa	1521,26 Pa	20 °C	65 %
novembre	7,0 °C	926,36 Pa	561,5 Pa	1487,86 Pa	20 °C	65 %
dicembre	2,8 °C	733,83 Pa	710,6 Pa	1444,43 Pa	20 °C	65 %
gennaio	2,3 °C	674,41 Pa	728,35 Pa	1402,76 Pa	20 °C	65 %
febbraio	2,8 °C	643,75 Pa	710,6 Pa	1354,35 Pa	20 °C	65 %
marzo	7,9 °C	794,1 Pa	529,55 Pa	1323,65 Pa	20 °C	65 %
aprile	11,4 °C	971,22 Pa	405,3 Pa	1376,52 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm
ottobre	16,71°C	0,573
novembre	16,36°C	0,7202
dicembre	15,9°C	0,7615
gennaio	15,44°C	0,7425
febbraio	14,9°C	0,7032
marzo	14,54°C	0,5487
aprile	15,15°C	0,4357

θe: temperatura esterna
Pe: pressione esterna
ΔP: variazione di pressione
Pi: pressione interna
θi: temperatura interna
φi: umidità relativa interna
θsi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,7615 (mese di Dicembre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1 402,8	1 354,4	1 323,6	1 376,5	1 499,2	1 478,8	1 864,8	1 839,3	1 753,9	1 521,3	1 487,9	1 444,4
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
Add-A	1 400,9	1 352,5	1 322,3	1 375,5	1 498,7	1 478,5	1 864,7	1 839,2	1 753,4	1 520,3	1 486,4	1 442,6
	2 235,1	2 237,9	2 266,9	2 287,0	2 320,0	2 339,3	2 345,8	2 344,6	2 323,5	2 292,2	2 261,8	2 237,9
A-B	1 399,0	1 350,7	1 320,9	1 374,4	1 498,2	1 478,3	1 864,6	1 839,0	1 752,9	1 519,3	1 485,0	1 440,8
	2 216,0	2 219,3	2 253,6	2 277,5	2 316,7	2 339,8	2 347,5	2 346,1	2 320,9	2 283,6	2 247,6	2 219,3
B-C	1 397,3	1 349,0	1 319,7	1 373,5	1 497,7	1 478,1	1 864,5	1 838,9	1 752,5	1 518,5	1 483,7	1 439,1
	1 412,6	1 433,5	1 662,2	1 837,1	2 156,5	2 362,8	2 435,4	2 422,0	2 192,8	1 884,6	1 619,6	1 433,5
C-D	780,1	746,9	871,0	1 030,0	1 325,7	1 405,4	1 824,9	1 793,3	1 598,6	1 202,1	1 007,9	837,0
	1 373,9	1 395,3	1 631,5	1 813,2	2 147,2	2 364,2	2 440,7	2 426,7	2 185,3	1 862,7	1 587,4	1 395,3
D-E	677,3	646,5	796,2	972,8	1 297,1	1 393,3	1 818,3	1 785,7	1 572,9	1 149,4	928,6	736,6
	726,7	752,8	1 070,8	1 352,5	1 951,4	2 395,0	2 561,4	2 530,4	2 026,2	1 434,6	1 007,3	752,8
E-F	674,4	643,8	794,1	971,2	1 296,3	1 393,0	1 818,1	1 785,5	1 572,2	1 147,9	926,4	733,8
	725,4	751,5	1 069,5	1 351,3	1 950,8	2 395,1	2 561,7	2 530,7	2 025,8	1 433,6	1 006,0	751,5
F-Add	674,4	643,8	794,1	971,2	1 296,3	1 393,0	1 818,1	1 785,5	1 572,2	1 147,9	926,4	733,8
	720,6	746,7	1 064,9	1 347,3	1 949,0	2 395,4	2 562,9	2 531,8	2 024,2	1 429,8	1 001,3	746,7

Temperature

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,4	19,4	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,7	19,6	19,4
A-B	19,3	19,3	19,5	19,7	19,9	20,0	20,1	20,1	19,9	19,7	19,5	19,3
B-C	19,1	19,2	19,4	19,6	19,9	20,0	20,1	20,1	19,9	19,6	19,4	19,2
C-D	12,1	12,3	14,6	16,2	18,7	20,2	20,7	20,6	19,0	16,6	14,2	12,3
D-E	11,7	11,9	14,3	16,0	18,6	20,2	20,7	20,6	18,9	16,4	13,9	11,9
E-F	2,4	2,9	8,0	11,5	17,1	20,4	21,5	21,3	17,7	12,4	7,1	2,9
F-Add	2,4	2,9	8,0	11,4	17,1	20,4	21,5	21,3	17,7	12,3	7,1	2,9
Add-Esterno	2,3	2,8	7,9	11,4	17,1	20,4	21,5	21,3	17,7	12,3	7,0	2,8

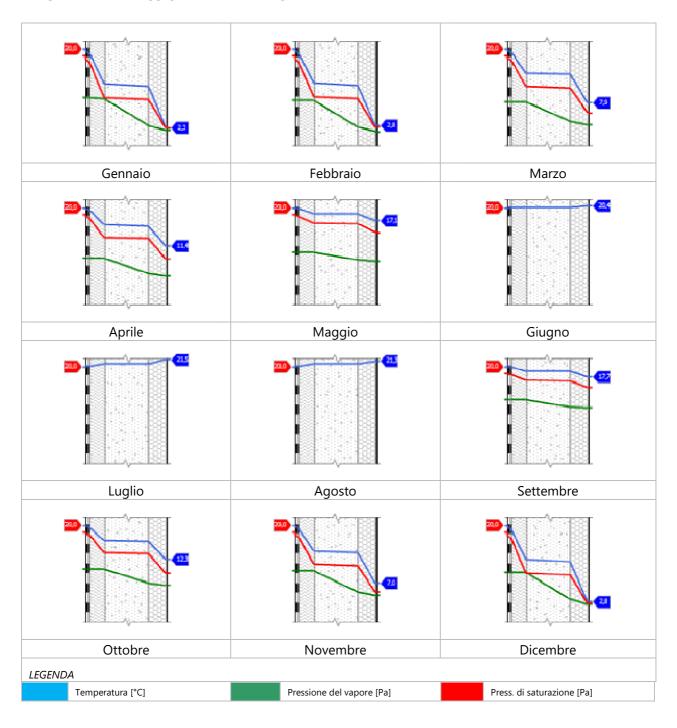
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. C/D								-				
Gc [Kg/m²]	-0,0260	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0096
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0096
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. F/G												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

dicembre - Interf. C/D. Formazione di condensa: $0,0096~kg/m^2$ Visualizza/modifica gli elementi in archiviodicembre

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente Gc: 0,0096 kg/m² C-D nel mese di dicembre


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0096 nel mese di dicembre kg/m² C-D

Esito della verifica di condensa interstiziale: Interfaccia C-D - Formazione di condensa: 0,0096 kg/m²

DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

Verifica di massa	
Massa della struttura per metro quadrato di supe	rfici

Massa della struttura per metro quadrato di superficie 694 kg/m² Valore minimo di massa superficiale 230 kg/m²

Esito della verifica di massa OK

Condizioni al contorno

Comune Concesio

Orientamento S

Colorazione Chiaro

Mese massima insolazione giugno

Temperatura media nel mese di massima insolazione

Temperatura massima estiva

Escursione giorno più caldo dell'anno 18,1 °C

Irradianza mensile massima sul piano orizzontale 284,72 W/m²

Inerzia termica

Sfasamento dell'onda termica 14h 36'

Fattore di attenuazione 0,0074

Capacità termica interna C1 28,4 kJ/m²K

Capacità termica esterna C2 19,2 kJ/m²K

Ammettenza interna oraria 16,0 W/m²K

Ammettenza interna 2,1 W/m²K

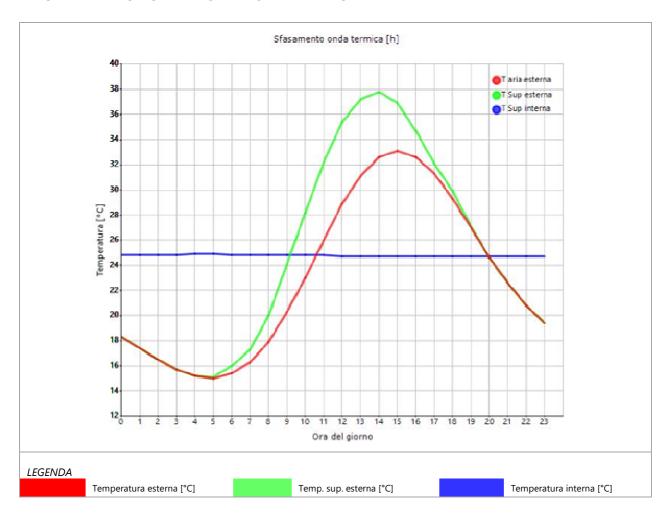
Ammettenza esterna oraria 17,1 W/m²K

Ammettenza esterna 1,4 W/m²K

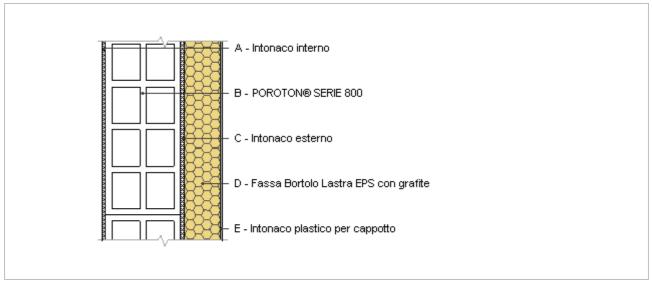
Trasmittanza periodica Y 0,001 W/m²K

Valore limite Ylim 0,100 W/m²K

Classificazione normativa


Esito della verifica di inerzia OK

	Temperatura esterna	Irradiazione solare	Temp. sup. esterna	Temp interna
	giorno più caldo Te	giorno più caldo le	giorno più caldo Te,sup	giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	18,27	0,00	18,27	24,75
1:00	17,36	0,00	17,36	24,79
2:00	16,46	0,00	16,46	24,81
3:00	15,73	0,00	15,73	24,84
4:00	15,19	0,00	15,19	24,85
5:00	15,01	10,20	15,13	24,86
6:00	15,37	49,20	15,96	24,85
7:00	16,28	85,80	17,31	24,83
8:00	17,90	173,80	19,99	24,81
9:00	20,26	316,80	24,06	24,80
10:00	22,97	434,00	28,18	24,78
11:00	26,05	509,60	32,17	24,76
12:00	28,95	535,60	35,37	24,74
13:00	31,12	509,60	37,23	24,73
14:00	32,57	434,00	37,77	24,72
15:00	33,11	316,80	36,91	24,71
16:00	32,57	173,80	34,65	24,71
17:00	31,30	70,40	32,14	24,70
18:00	29,31	49,60	29,90	24,69


20,4 °C 33,1 °C

19:00	26,95	10,20	27,08	24,69
20:00	24,60	0,00	24,60	24,69
21:00	22,61	0,00	22,61	24,69
22:00	20,80	0,00	20,80	24,70
23:00	19,35	0,00	19,35	24,72

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA

ME03 - EST - 402 - Parete blocco palestra nuova

Spessore	402,5 mm	Trasmittanza	0,179 W/m ² K	
Resistenza	5,597 m ² K/W	Massa superf.	215 kg/m ²	
Tipologia	Parete			
Descrizione				

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore µu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Intonaco interno	10,0	0,700	0,014	1 400	1,00	11,1
В	POROTON® SERIE 800	250,0	0,182	1,374	850	1,00	10,0
С	Intonaco esterno	15,0	0,900	0,017	1 800	1,00	16,7
D	Fassa Bortolo Lastra EPS con grafite	120,0	0,030	4,000	19	1,45	50,0
Е	Intonaco plastico per cappotto	7,5	0,330	0,023	1 300	0,84	32,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-
	TOTALE	402,5		5,597			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al contorno e dati climatici						
Comune	Concesio					
Tipo di calcolo	Classi di concentrazione					
Verso	Esterno					
Coeff. btr,x	1					
Volume	- m³					
Classe edificio	Edifici con indice di affollamento non noto					
Produz. nota	- kg/h					

Mese	θі	φί	θе	фе	n
gennaio	20,0 °C	- %	2,3 °C	93,6 %	0,5 1/h
febbraio	20,0 °C	- %	2,8 °C	86,2 %	0,5 1/h
marzo	20,0 °C	- %	7,9 °C	74,6 %	0,5 1/h
aprile	20,0 °C	- %	11,4 °C	72,1 %	0,5 1/h
maggio	20,0 °C	- %	17,1 °C	66,5 %	0,5 1/h
giugno	20,0 °C	- %	20,4 °C	58,2 %	0,5 1/h
luglio	20,0 °C	- %	21,5 °C	70,9 %	0,5 1/h
agosto	20,0 °C	- %	21,3 °C	70,5 %	0,5 1/h
settembre	20,0 °C	- %	17,7 °C	77,7 %	0,5 1/h
ottobre	20,0 °C	- %	12,3 °C	80,3 %	0,5 1/h
novembre	20,0 °C	- %	7,0 °C	92,5 %	0,5 1/h
dicembre	20,0 °C	- %	2,8 °C	98,3 %	0,5 1/h

Condizione	θі	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	2,30 °C	674,40 Pa
ESTIVA	20,00 °C	1 665,90 Pa	21,50 °C	1 818,10 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 481,616 Pa.

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).

La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 481,616 Pa.

Verifica di formazione di muffe superficiali

Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	12,3 °C	1147,91 Pa	373,35 Pa	1521,26 Pa	20 °C	65 %
novembre	7,0 °C	926,36 Pa	561,5 Pa	1487,86 Pa	20 °C	65 %
dicembre	2,8 °C	733,83 Pa	710,6 Pa	1444,43 Pa	20 °C	65 %
gennaio	2,3 °C	674,41 Pa	728,35 Pa	1402,76 Pa	20 °C	65 %
febbraio	2,8 °C	643,75 Pa	710,6 Pa	1354,35 Pa	20 °C	65 %
marzo	7,9 °C	794,1 Pa	529,55 Pa	1323,65 Pa	20 °C	65 %
aprile	11,4 °C	971,22 Pa	405,3 Pa	1376,52 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm
ottobre	16,71°C	0,573
novembre	16,36°C	0,7202
dicembre	15,9°C	0,7615
gennaio	15,44°C	0,7425
febbraio	14,9°C	0,7032
marzo	14,54°C	0,5487
aprile	15,15°C	0,4357

θe: temperatura esterna
Pe: pressione esterna
ΔP: variazione di pressione
Pi: pressione interna
θi: temperatura interna
φi: umidità relativa interna
θsi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,7615 (mese di Dicembre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1 402,8	1 354,4	1 323,6	1 376,5	1 499,2	1 478,8	1 864,8	1 839,3	1 753,9	1 521,3	1 487,9	1 444,4
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
Add-A	1 393,9	1 345,7	1 317,2	1 371,6	1 496,7	1 477,7	1 864,3	1 838,7	1 751,7	1 516,7	1 481,0	1 435,8
	2 221,2	2 224,4	2 257,3	2 280,1	2 317,6	2 339,6	2 347,0	2 345,7	2 321,6	2 286,0	2 251,4	2 224,4
A-B	1 193,8	1 150,5	1 171,7	1 260,2	1 441,0	1 454,2	1 851,4	1 823,9	1 701,8	1 414,1	1 326,8	1 240,6
	1 696,7	1 712,4	1 880,1	2 003,4	2 219,4	2 353,6	2 399,8	2 391,4	2 243,3	2 036,3	1 849,5	1 712,4
B-C	1 173,8	1 131,0	1 157,2	1 249,1	1 435,4	1 451,8	1 850,1	1 822,4	1 696,8	1 403,9	1 311,3	1 221,0
	1 691,0	1 706,9	1 875,9	2 000,3	2 218,3	2 353,7	2 400,5	2 391,9	2 242,4	2 033,4	1 845,1	1 706,9
C-D	693,6	662,5	808,1	981,9	1 301,6	1 395,2	1 819,3	1 786,9	1 577,0	1 157,8	941,2	752,6
	730,6	756,8	1 074,6	1 355,7	1 952,9	2 394,8	2 560,4	2 529,5	2 027,5	1 437,7	1 011,2	756,8
D-E	674,4	643,8	794,1	971,2	1 296,3	1 393,0	1 818,1	1 785,5	1 572,2	1 147,9	926,4	733,8
	727,0	753,1	1 071,1	1 352,7	1 951,5	2 395,0	2 561,3	2 530,3	2 026,3	1 434,9	1 007,6	753,1
E-Add	674,4	643,8	794,1	971,2	1 296,3	1 393,0	1 818,1	1 785,5	1 572,2	1 147,9	926,4	733,8
	720,6	746,7	1 064,9	1 347,3	1 949,0	2 395,4	2 562,9	2 531,8	2 024,2	1 429,8	1 001,3	746,7

Temperature

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,2	19,2	19,5	19,6	19,9	20,0	20,1	20,1	19,9	19,7	19,4	19,2
A-B	19,2	19,2	19,4	19,6	19,9	20,0	20,1	20,1	19,9	19,6	19,4	19,2
В-С	14,9	15,1	16,5	17,5	19,2	20,1	20,4	20,4	19,3	17,8	16,3	15,1
C-D	14,9	15,0	16,5	17,5	19,2	20,1	20,4	20,4	19,3	17,8	16,2	15,0
D-E	2,5	3,0	8,0	11,5	17,1	20,4	21,5	21,3	17,7	12,4	7,1	3,0
E-Add	2,4	2,9	8,0	11,5	17,1	20,4	21,5	21,3	17,7	12,4	7,1	2,9
Add-Esterno	2,3	2,8	7,9	11,4	17,1	20,4	21,5	21,3	17,7	12,3	7,0	2,8

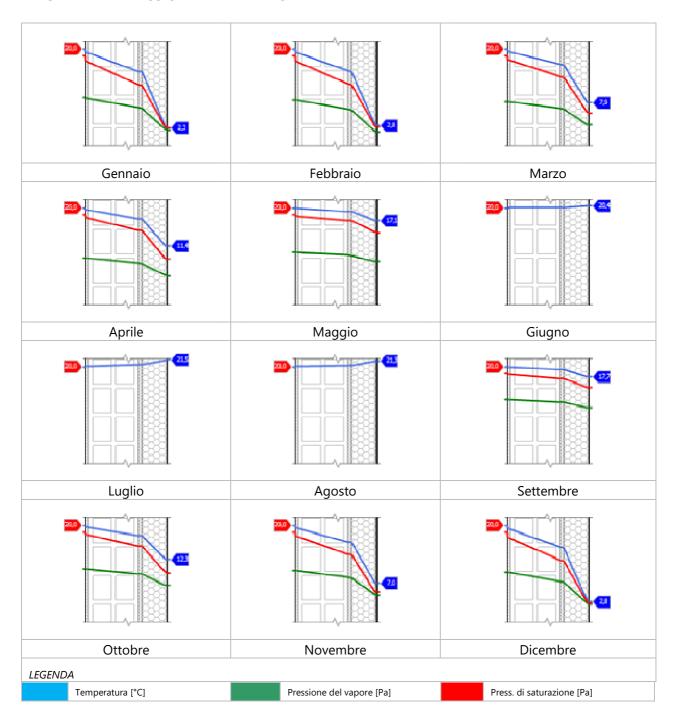
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente

Gc: 0,0000 kg/m²


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 kg/m²

Esito della verifica di condensa interstiziale: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

li massa
li massa

Massa della struttura per metro quadrato di superficie 215 kg/m² Valore minimo di massa superficiale 230 kg/m²

Valore minimo di massa superficiale 230 kg/s
Esito della verifica di massa OK

Condizioni al contorno

Comune Concesio

Orientamento S

Colorazione Chiaro

Mese massima insolazione giugno

Temperatura media nel mese di massima insolazione

Temperatura massima estiva

Escursione giorno più caldo dell'anno ___18,1 °C

Irradianza mensile massima sul piano orizzontale 284,72 W/m²

Inerzia termica

Sfasamento dell'onda termica 15h 31'

Fattore di attenuazione 0,0481

Capacità termica interna C1 40,0 kJ/m²K

Capacità termica esterna C2 9,9 kJ/m²K

Ammettenza interna oraria 14,4 W/m²K

Ammettenza interna 2,9 W/m²K

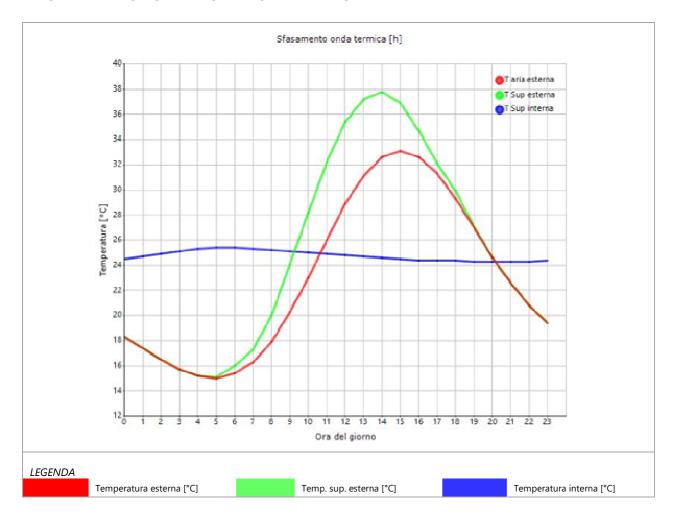
Ammettenza esterna oraria 16,5 W/m²K

Ammettenza esterna 0,7 W/m²K

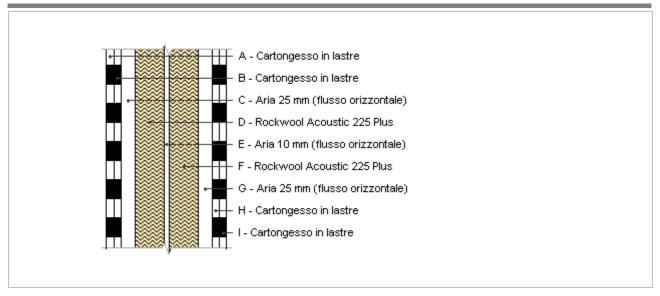
Trasmittanza periodica Y 0,009 W/m²K

Valore limite Ylim 0,100 W/m²K

Classificazione normativa

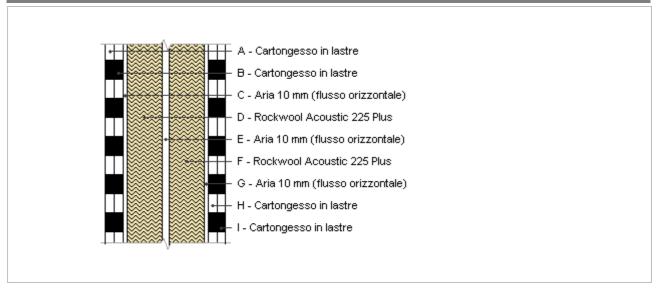

Esito della verifica di inerzia OK

	Temperatura esterna	Irradiazione solare	Temp. sup. esterna	Temp interna
	giorno più caldo Te	giorno più caldo le	giorno più caldo Te,sup	giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	18,27	0,00	18,27	24,53
1:00	17,36	0,00	17,36	24,73
2:00	16,46	0,00	16,46	24,92
3:00	15,73	0,00	15,73	25,12
4:00	15,19	0,00	15,19	25,27
5:00	15,01	10,20	15,13	25,36
6:00	15,37	49,20	15,96	25,39
7:00	16,28	85,80	17,31	25,34
8:00	17,90	173,80	19,99	25,24
9:00	20,26	316,80	24,06	25,11
10:00	22,97	434,00	28,18	25,01
11:00	26,05	509,60	32,17	24,87
12:00	28,95	535,60	35,37	24,75
13:00	31,12	509,60	37,23	24,66
14:00	32,57	434,00	37,77	24,57
15:00	33,11	316,80	36,91	24,50
16:00	32,57	173,80	34,65	24,45
17:00	31,30	70,40	32,14	24,40
18:00	29,31	49,60	29,90	24,36


20,4 °C 33,1 °C

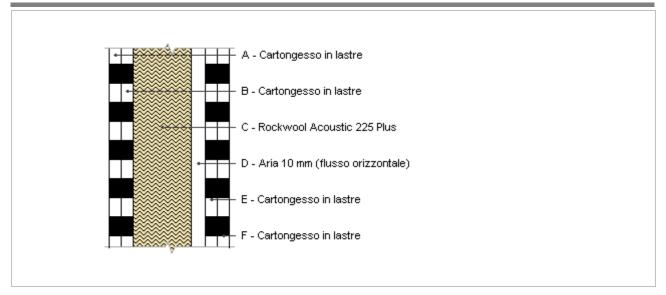
19:00	26,95	10,20	27,08	24,33
20:00	24,60	0,00	24,60	24,30
21:00	22,61	0,00	22,61	24,30
22:00	20,80	0,00	20,80	24,34
23:00	19,35	0,00	19,35	24,40

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA


MI01 - INT - 210 - Parete divisoria tra aule

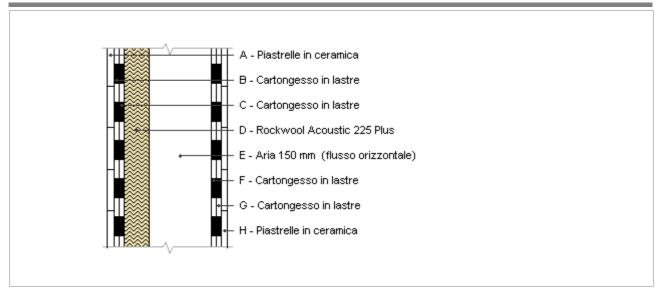
Spessore	210,0 mm	Trasmittanza	0,248 W/m ² K	
Resistenza	4,028 m ² K/W	Massa superf.	54 kg/m²	
Tipologia	Parete			
Descrizione				

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
		S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
В	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
С	Aria 25 mm (flusso orizzontale)	25,0	0,140	0,179	1	1,00	1,0
D	Rockwool Acoustic 225 Plus	50,0	0,033	1,515	90	1,03	1,0
Ε	Aria 10 mm (flusso orizzontale)	10,0	0,070	0,143	1	1,00	1,0
F	Rockwool Acoustic 225 Plus	50,0	0,033	1,515	90	1,03	1,0
G	Aria 25 mm (flusso orizzontale)	25,0	0,140	0,179	1	1,00	1,0
Н	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
1	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
	TOTALE	210,0		4,028			


MI02 - INT - 170 - Parete interna palestra

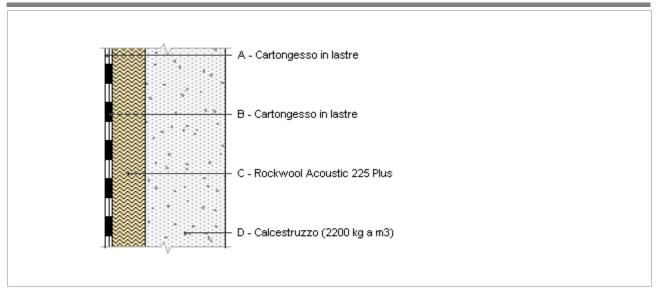
Spessore	170,0 mm	Trasmittanza	0,262 W/m ² K	
Resistenza	3,814 m ² K/W	Massa superf.	54 kg/m²	
Tipologia	Parete			
Descrizione				

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
		S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
В	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
С	Aria 10 mm (flusso orizzontale)	5,0	0,070	0,071	1	1,00	1,0
D	Rockwool Acoustic 225 Plus	50,0	0,033	1,515	90	1,03	1,0
Ε	Aria 10 mm (flusso orizzontale)	10,0	0,070	0,143	1	1,00	1,0
F	Rockwool Acoustic 225 Plus	50,0	0,033	1,515	90	1,03	1,0
G	Aria 10 mm (flusso orizzontale)	5,0	0,070	0,071	1	1,00	1,0
Н	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
I	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
	TOTALE	170,0		3,814			


MI03 - INT - 125 - Parete divisoria standard

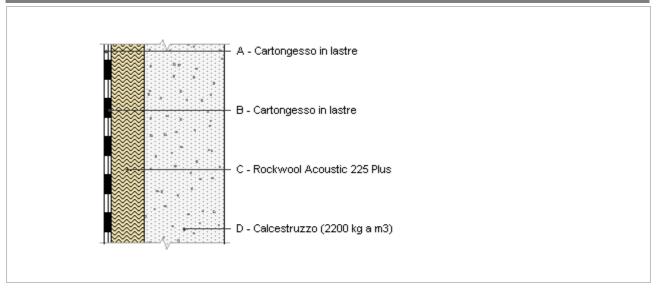
Spessore125,0 mmTrasmittanza0,395 W/m²KResistenza2,531 m²K/WMassa superf.50 kg/m²TipologiaPareteDescrizione

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
В	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
С	Rockwool Acoustic 225 Plus	60,0	0,033	1,818	90	1,03	1,0
D	Aria 10 mm (flusso orizzontale)	15,0	0,070	0,214	1	1,00	1,0
Е	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
F	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
	TOTALE	125.0		2.531			


MI03g - INT - 290 - Parete divisoria bagni

Spessore	290,0 mm	Trasmittanza	0,396 W/m ² K	
Resistenza	2,527 m ² K/W	Massa superf.	120 kg/m²	
Tipologia	Parete			
Descrizione				

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Piastrelle in ceramica	15,0	1,000	0,015	2 300	1,00	500 000,0
В	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
C	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
D	Rockwool Acoustic 225 Plus	60,0	0,033	1,818	90	1,03	1,0
Е	Aria 150 mm (flusso orizzontale)	150,0	0,830	0,181	1	1,00	1,0
F	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
G	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
Н	Piastrelle in ceramica	15,0	1,000	0,015	2 300	1,00	500 000,0
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
	TOTALE	290,0		2,527			


MI04a - INT - 445 - Parete in C.A. con controparete

Spessore	445,0 mm	Trasmittanza	0,238 W/m ² K
Resistenza	4,197 m ² K/W	Massa superf.	693 kg/m²
Tipologia	Parete		
Descrizione			

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μυ
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
В	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
С	Rockwool Acoustic 225 Plus	120,0	0,033	3,636	90	1,03	1,0
D	Calcestruzzo (2200 kg a m3)	300,0	1,650	0,182	2 200	1,00	70,0
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
	TOTALE	445,0		4,197			

MI04a - ZNR - 445 - Parete in C.A. con controparete

Spessore	445,0 mm	Trasmittanza	0,238 W/m ² K
Resistenza	4,197 m ² K/W	Massa superf.	693 kg/m²
Tipologia	Parete		
Descrizione			

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
В	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
С	Rockwool Acoustic 225 Plus	120,0	0,033	3,636	90	1,03	1,0
D	Calcestruzzo (2200 kg a m3)	300,0	1,650	0,182	2 200	1,00	70,0
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
	TOTALE	445,0		4,197			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al contorno e dati climatici							
Comune	Concesio						
Tipo di calcolo	Classi di concentrazione						
Verso	Zona non riscaldata						
Coeff. btr,x	0,0						
Volume	- m ³						
Classe edificio	Edifici con indice di affollamento non noto						
Produz. nota	- kg/h						

Mese	θі	φί	θе	φе	n
gennaio	20,0 °C	- %	20,0 °C	93,6 %	0,5 1/h
febbraio	20,0 °C	- %	20,0 °C	86,2 %	0,5 1/h
marzo	20,0 °C	- %	20,0 °C	74,6 %	0,5 1/h
aprile	20,0 °C	- %	20,0 °C	72,1 %	0,5 1/h
maggio	20,0 °C	- %	20,0 °C	66,5 %	0,5 1/h
giugno	20,0 °C	- %	20,0 °C	58,2 %	0,5 1/h
luglio	20,0 °C	- %	20,0 °C	70,9 %	0,5 1/h
agosto	20,0 °C	- %	20,0 °C	70,5 %	0,5 1/h
settembre	20,0 °C	- %	20,0 °C	77,7 %	0,5 1/h
ottobre	20,0 °C	- %	20,0 °C	80,3 %	0,5 1/h
novembre	20,0 °C	- %	20,0 °C	92,5 %	0,5 1/h
dicembre	20,0 °C	- %	20,0 °C	98,3 %	0,5 1/h

Condizione	θί	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	20,00 °C	2 187,20 Pa
ESTIVA	20.00 °C	1 519.00 Pa	20.00 °C	2 187.20 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 49,719 Pa.

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).

La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 49,719 Pa.

Verifica di formazione di muffe superficiali

Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	20,0 °C	1876,24 Pa	100 Pa	1976,24 Pa	20 °C	65 %
novembre	20,0 °C	2161,97 Pa	100 Pa	2261,97 Pa	20 °C	65 %
dicembre	20,0 °C	2296,67 Pa	100 Pa	2396,67 Pa	20 °C	65 %
gennaio	20,0 °C	2187,23 Pa	100 Pa	2287,23 Pa	20 °C	65 %
febbraio	20,0 °C	2014,76 Pa	100 Pa	2114,76 Pa	20 °C	65 %
marzo	20,0 °C	1742,63 Pa	100 Pa	1842,63 Pa	20 °C	65 %
aprile	20,0 °C	1684,61 Pa	100 Pa	1784,61 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm
ottobre	20,9°C	0
novembre	23,12°C	0
dicembre	24,08°C	0
gennaio	23,3°C	0
febbraio	22,01°C	0
marzo	19,77°C	0
aprile	19,25°C	0

θe: temperatura esterna Pe: pressione esterna ΔP: variazione di pressione Pi: pressione interna θi: temperatura interna

φi: umidità relativa interna

θsi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,0000 (mese di Ottobre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	2 287,2	2 114,8	1 842,6	1 784,6	1 654,3	1 459,0	1 757,8	1 748,1	1 915,1	1 976,2	2 262,0	2 396,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
Add-A	2 286,9	2 114,5	1 842,3	1 784,3	1 654,0	1 458,7	1 757,5	1 747,8	1 914,8	1 975,9	2 261,7	2 396,4
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
A-B	2 286,6	2 114,2	1 842,0	1 784,0	1 653,7	1 458,4	1 757,2	1 747,5	1 914,5	1 975,6	2 261,4	2 396,1
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
В-С	2 286,3	2 113,8	1 841,7	1 783,7	1 653,4	1 458,0	1 756,8	1 747,2	1 914,2	1 975,3	2 261,0	2 395,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
C-D	2 187,2	2 014,8	1 742,6	1 684,6	1 554,3	1 359,0	1 657,8	1 648,1	1 815,1	1 876,2	2 162,0	2 296,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
D-Add	2 187,2	2 014,8	1 742,6	1 684,6	1 554,3	1 359,0	1 657,8	1 648,1	1 815,1	1 876,2	2 162,0	2 296,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0

Temperature

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
A-B	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
B-C	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
C-D	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
D-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-Esterno	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0

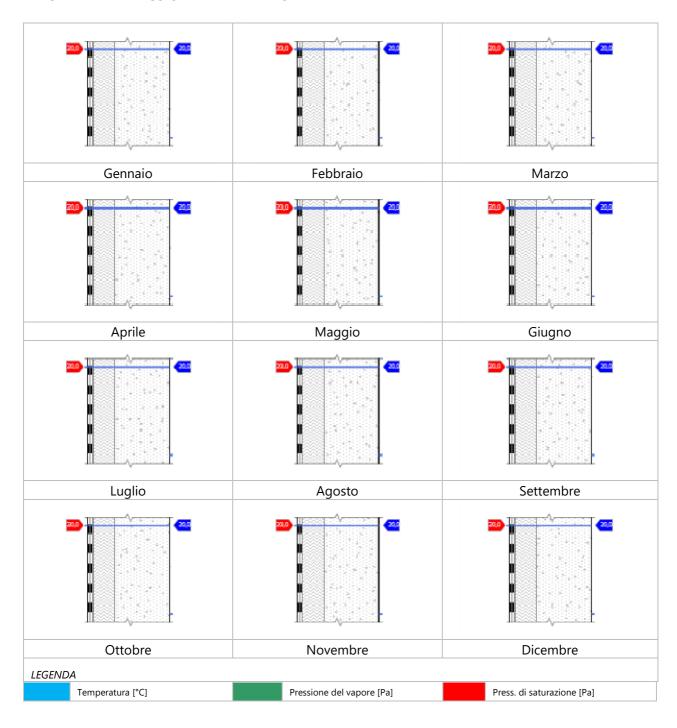
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente

Gc: 0,0000 kg/m²


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 kg/m²

Esito della verifica di condensa interstiziale: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

Massa della struttura ner metro quadrato di superfi	~i,

693 kg/m² Massa della struttura per metro quadrato di superficie Valore minimo di massa superficiale 230 kg/m²

Esito della verifica di massa OK

Condizioni al contorno

Verifica di massa

Comune Concesio

Orientamento Ν

Colorazione Chiaro Mese massima insolazione giugno

Temperatura media nel mese di massima insolazione

Temperatura massima estiva

Escursione giorno più caldo dell'anno 18,1 °C

Irradianza mensile massima sul piano orizzontale 284,72 W/m²

Inerzia termica

Sfasamento dell'onda termica 13h 28'

Fattore di attenuazione 0,0782

Capacità termica interna C1 28,8 kJ/m²K

77,1 kJ/m²K Capacità termica esterna C2

16,1 W/m²K Ammettenza interna oraria

Ammettenza interna 2,1 W/m²K

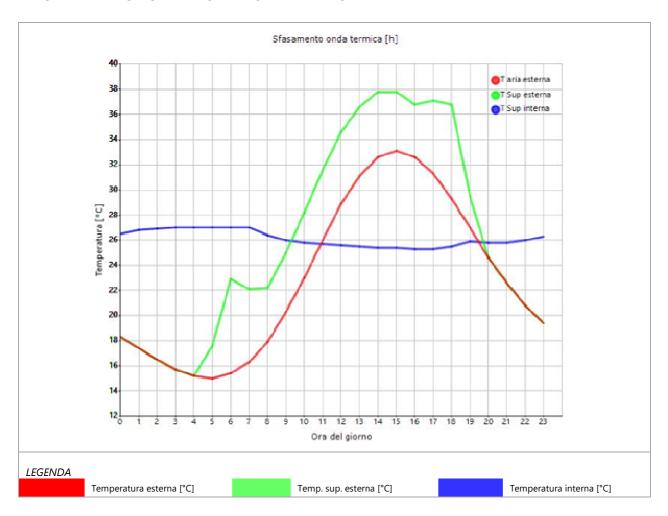
12,9 W/m²K Ammettenza esterna oraria

Ammettenza esterna 5,6 W/m²K

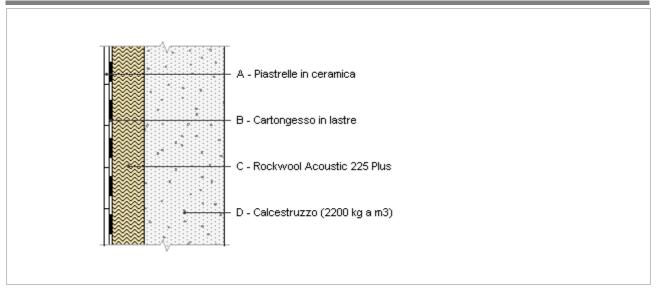
Trasmittanza periodica Y 0,019 W/m²K

Valore limite Ylim 0,100 W/m²K

Classificazione normativa


Esito della verifica di inerzia OK

	Temperatura esterna	Irradiazione solare	Temp. sup. esterna	Temp interna
	giorno più caldo Te	giorno più caldo le	giorno più caldo Te,sup	giorno più caldo Ti
Ora	°C	W/m ²	°C	°C
0:00	18,27	0,00	18,27	26,54
1:00	17,36	0,00	17,36	26,78
2:00	16,46	0,00	16,46	26,94
3:00	15,73	0,00	15,73	27,03
4:00	15,19	0,00	15,19	27,03
5:00	15,01	66,40	17,60	26,96
6:00	15,37	191,80	22,85	26,98
7:00	16,28	149,00	22,09	26,95
8:00	17,90	109,20	22,17	26,39
9:00	20,26	120,80	24,97	26,00
10:00	22,97	133,20	28,17	25,84
11:00	26,05	141,40	31,57	25,70
12:00	28,95	144,20	34,57	25,59
13:00	31,12	141,40	36,63	25,50
14:00	32,57	133,20	37,76	25,43
15:00	33,11	120,80	37,82	25,36
16:00	32,57	109,20	36,83	25,31
17:00	31,30	149,00	37,11	25,26
18:00	29,31	191,80	36,79	25,45


20,4 °C 33,1 °C

19:00	26,95	66,40	29,55	25,86
20:00	24,60	0,00	24,60	25,80
21:00	22,61	0,00	22,61	25,81
22:00	20,80	0,00	20,80	26,03
23:00	19,35	0,00	19,35	26,28

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA

MI04b - TER - 445 - Parete in C.A. con controparete

Spessore	447,5 mm	Trasmittanza	0,249 W/m ² K	
Resistenza	4,023 m ² K/W	Massa superf.	717 kg/m²	
Tipologia	Parete			
Descrizione				

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità o	Capacità C	Fattore µu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Piastrelle in ceramica	15,0	1,000	0,015	2 300	1,00	500 000,0
В	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
С	Rockwool Acoustic 225 Plus	120,0	0,033	3,636	90	1,03	1,0
D	Calcestruzzo (2200 kg a m3)	300,0	1,650	0,182	2 200	1,00	70,0
	TOTALE	447,5		4,023			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al contorno e dati climatici							
Concesio							
Classi di concentrazione							
Terreno							
- m ³							
Edifici con indice di affollamento non noto							
- kg/h							

Mese	θі	фі	θе	фе	n
gennaio	20,0 °C	- %	12,0 °C	100,0 %	0,5 1/h
febbraio	20,0 °C	- %	12,0 °C	100,0 %	0,5 1/h
marzo	20,0 °C	- %	12,0 °C	100,0 %	0,5 1/h
aprile	20,0 °C	- %	12,0 °C	100,0 %	0,5 1/h
maggio	18,0 °C	- %	12,0 °C	100,0 %	0,5 1/h
giugno	20,4 °C	- %	12,0 °C	100,0 %	0,5 1/h
luglio	21,5 °C	- %	12,0 °C	100,0 %	0,5 1/h
agosto	21,3 °C	- %	12,0 °C	100,0 %	0,5 1/h
settembre	18,0 °C	- %	12,0 °C	100,0 %	0,5 1/h
ottobre	20,0 °C	- %	12,0 °C	100,0 %	0,5 1/h
novembre	20,0 °C	- %	12,0 °C	100,0 %	0,5 1/h
dicembre	20,0 °C	- %	12,0 °C	100,0 %	0,5 1/h

Condizione	θі	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	12,00 °C	1 401,80 Pa
ESTIVA	20,00 °C	911,20 Pa	12,00 °C	1 401,80 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 230,527 Pa.

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).

La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 230,527 Pa.

Verifica di formazione di muffe superficiali

Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	12,0 °C	1401,81 Pa	384 Pa	1785,81 Pa	20 °C	65 %
novembre	12,0 °C	1401,81 Pa	384 Pa	1785,81 Pa	20 °C	65 %
dicembre	12,0 °C	1401,81 Pa	384 Pa	1785,81 Pa	20 °C	65 %
gennaio	12,0 °C	1401,81 Pa	384 Pa	1785,81 Pa	20 °C	65 %
febbraio	12,0 °C	1401,81 Pa	384 Pa	1785,81 Pa	20 °C	65 %
marzo	12,0 °C	1401,81 Pa	384 Pa	1785,81 Pa	20 °C	65 %
aprile	12,0 °C	1401,81 Pa	384 Pa	1785,81 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm		
ottobre	19,26°C	0,9077		
novembre	19,26°C	0,9077		
dicembre	19,26°C	0,9077		
gennaio	19,26°C	0,9077		
febbraio	19,26°C	0,9077		
marzo	19,26°C	0,9077		
aprile	19,26°C	0,9077		

θe: temperatura esterna Pe: pressione esterna ΔP: variazione di pressione Pi: pressione interna

θi: temperatura interna φi: umidità relativa interna

θsi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,9077 (mese di Ottobre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1 785,8	1 785,8	1 785,8	1 785,8	1 785,8	1 785,8	1 785,8	1 785,8	1 785,8	1 785,8	1 785,8	1 785,8
	2 337,0	2 337,0	2 337,0	2 337,0	2 062,8	2 395,4	2 562,9	2 531,8	2 062,8	2 337,0	2 337,0	2 337,0
Add-A	1 403,7	1 403,7	1 403,7	1 403,7	1 403,7	1 403,7	1 403,7	1 403,7	1 403,7	1 403,7	1 403,7	1 403,7
	2 263,9	2 263,9	2 263,9	2 263,9	2 013,6	2 317,2	2 469,2	2 440,9	2 013,6	2 263,9	2 263,9	2 263,9
A-B	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6
	2 247,8	2 247,8	2 247,8	2 247,8	2 002,7	2 299,9	2 448,5	2 420,9	2 002,7	2 247,8	2 247,8	2 247,8
B-C	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6	1 403,6
	1 434,6	1 434,6	1 434,6	1 434,6	1 426,3	1 436,2	1 440,8	1 440,0	1 426,3	1 434,6	1 434,6	1 434,6
C-Esterno	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8
	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8	1 401,8

Temperature

•	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	18,0	20,4	21,5	21,3	18,0	20,0	20,0	20,0
Add-A	19,5	19,5	19,5	19,5	17,6	19,9	20,9	20,7	17,6	19,5	19,5	19,5
A-B	19,5	19,5	19,5	19,5	17,6	19,9	20,9	20,7	17,6	19,5	19,5	19,5
В-С	19,4	19,4	19,4	19,4	17,5	19,7	20,8	20,6	17,5	19,4	19,4	19,4
C-Esterno	12,4	12,4	12,4	12,4	12,3	12,4	12,4	12,4	12,3	12,4	12,4	12,4
C-Esterno	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0	12,0

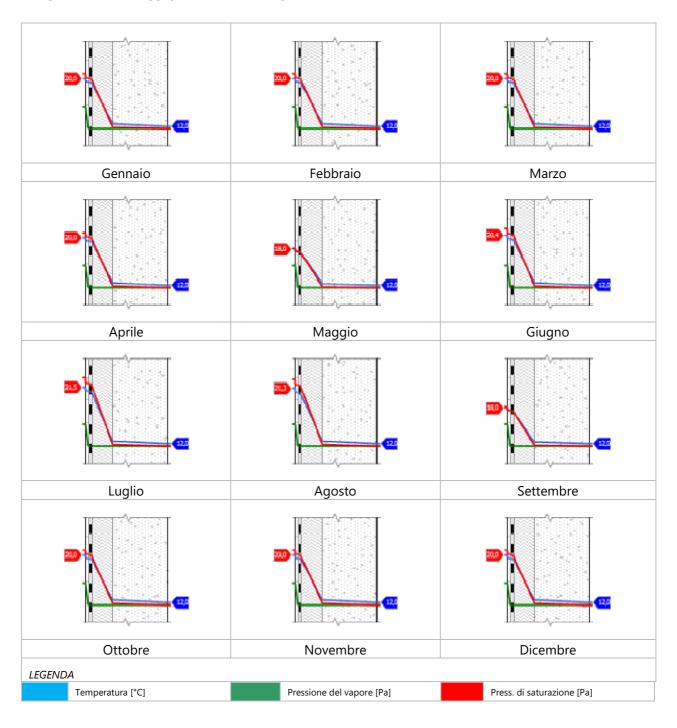
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente

Gc: 0,0000 kg/m²


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 kg/m²

Esito della verifica di condensa interstiziale: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

V	erific	a di	massa

Massa della struttura per metro quadrato di superficie 717 kg/m²

Valore minimo di massa superficiale 230 kg/m²

Esito della verifica di massa OK

Condizioni al contorno

Comune Concesio

Orientamento S

Colorazione Chiaro

Mese massima insolazione giugno

Temperatura media nel mese di massima insolazione 20,4 °C

Temperatura massima estiva

Escursione giorno più caldo dell'anno __18,1 °C

Irradianza mensile massima sul piano orizzontale 284,72 W/m²

15,9 W/m²K

3,3 W/m²K

Inerzia termica

Sfasamento dell'onda termica 11h 50'

Fattore di attenuazione 0,2145

Capacità termica interna C1 45,1 kJ/m²K

Capacità termica esterna C2 227,3 kJ/m²K

Ammettenza interna oraria

Ammettenza interna

Ammettenza esterna oraria

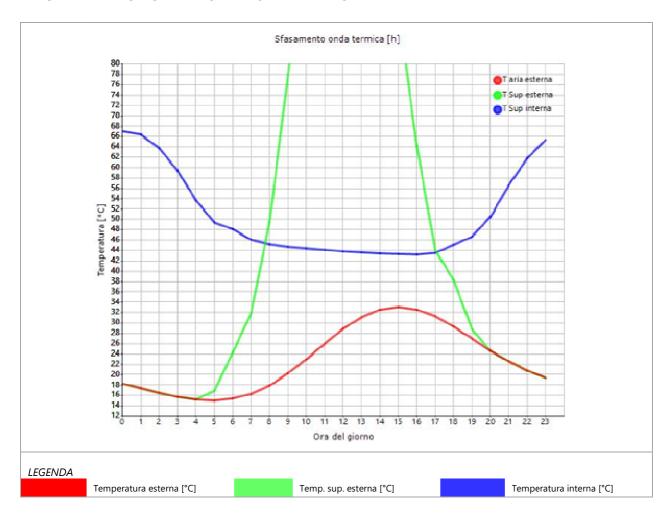
Ammettenza esterna

Trasmittanza periodica Y

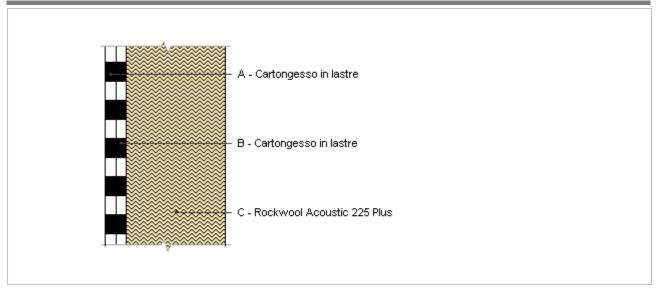
Valore limite Ylim 0,100

Classificazione normativa

Esito della verifica di inerzia OK


14,9 W/m ² K		
16,5 W/m²K		
0,053 W/m ² K		
0,100 W/m ² K		

33,1 °C


	Temperatura esterna	Irradiazione solare	Temp. sup. esterna	Temp interna		
	giorno più caldo Te	giorno più caldo le	giorno più caldo Te,sup	giorno più caldo Ti		
Ora	°C	W/m²	°C	°C		
0:00	18,27	0,00	18,27	67,00		
1:00	17,36	0,00	17,36	66,45		
2:00	16,46	0,00	16,46	63,81		
3:00	15,73	0,00	15,73	59,36		
4:00	15,19	0,00	15,19	53,66		
5:00	15,01	10,20	16,86	49,36		
6:00	15,37	49,20	24,32	48,12		
7:00	16,28	85,80	31,88	46,08		
8:00	17,90	173,80	49,50	45,18		
9:00	20,26	316,80	77,86	44,75		
10:00	22,97	434,00	101,88	44,36		
11:00	26,05	509,60	118,70	44,05		
12:00	28,95	535,60	126,33	43,82		
13:00	31,12	509,60	123,77	43,62		
14:00	32,57	434,00	111,48	43,43		
15:00	33,11	316,80	90,71	43,27		
16:00	32,57	173,80	64,17	43,16		
17:00	31,30	70,40	44,10	43,52		
18:00	29,31	49,60	38,33	45,11		

19:00	26,95	10,20	28,81	46,74
20:00	24,60	0,00	24,60	50,52
21:00	22,61	0,00	22,61	56,60
22:00	20,80	0,00	20,80	61,75
23:00	19,35	0,00	19,35	65,36

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA

MI04c - ZNR - 145 - Controparete passaggio impianti mensa

Spessore	145,0 mm	Trasmittanza			
Resistenza	4,015 m ² K/W	Massa superf.			
Tipologia	Parete				
Descrizione					

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
В	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
C	Rockwool Acoustic 225 Plus	120,0	0,033	3,636	90	1,03	1,0
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
	TOTALE	145,0		4,015			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al contorno e dati climaticiComuneConcesioTipo di calcoloClassi di concentrazioneVersoZona non riscaldataCoeff. btr,x0,5Volume- m³Classe edificioEdifici con indice di affollamento non notoProduz. nota- kg/h

Mese	θі	φί	θе	фе	n
gennaio	20,0 °C	- %	11,1 °C	93,6 %	0,5 1/h
febbraio	20,0 °C	- %	11,4 °C	86,2 %	0,5 1/h
marzo	20,0 °C	- %	14,0 °C	74,6 %	0,5 1/h
aprile	20,0 °C	- %	15,7 °C	72,1 %	0,5 1/h
maggio	20,0 °C	- %	18,6 °C	66,5 %	0,5 1/h
giugno	20,0 °C	- %	20,2 °C	58,2 %	0,5 1/h
luglio	20,0 °C	- %	20,8 °C	70,9 %	0,5 1/h
agosto	20,0 °C	- %	20,6 °C	70,5 %	0,5 1/h
settembre	20,0 °C	- %	18,9 °C	77,7 %	0,5 1/h
ottobre	20,0 °C	- %	16,2 °C	80,3 %	0,5 1/h
novembre	20,0 °C	- %	13,5 °C	92,5 %	0,5 1/h
dicembre	20,0 °C	- %	11,4 °C	98,3 %	0,5 1/h

Condizione	θі	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	11,10 °C	1 236,10 Pa
ESTIVA	20,00 °C	1 595,90 Pa	20,80 °C	1 741,70 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 493,440 Pa.

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).

La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 493,440 Pa.

Verifica di formazione di muffe superficiali

Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	16,2 °C	1477,76 Pa	234,9 Pa	1712,66 Pa	20 °C	65 %
novembre	13,5 °C	1430,82 Pa	330,75 Pa	1761,57 Pa	20 °C	65 %
dicembre	11,4 °C	1324,08 Pa	405,3 Pa	1729,38 Pa	20 °C	65 %
gennaio	11,1 °C	1236,14 Pa	415,95 Pa	1652,09 Pa	20 °C	65 %
febbraio	11,4 °C	1161,55 Pa	405,3 Pa	1566,85 Pa	20 °C	65 %
marzo	14,0 °C	1191,4 Pa	313 Pa	1504,4 Pa	20 °C	65 %
aprile	15,7 °C	1285,11 Pa	252,65 Pa	1537,76 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm
ottobre	18,59°C	0,6294
novembre	19,04°C	0,8527
dicembre	18,75°C	0,8543
gennaio	18,02°C	0,7773
febbraio	17,18°C	0,6718
marzo	16,54°C	0,4228
aprile	16,88°C	0,2749

θe: temperatura esterna Pe: pressione esterna ΔP: variazione di pressione Pi: pressione interna θi: temperatura interna

φi: umidità relativa interna

θsi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,8543 (mese di Dicembre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1 652,1	1 566,9	1 504,4	1 537,8	1 574,3	1 468,8	1 813,3	1 789,0	1 834,2	1 712,7	1 761,6	1 729,4
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
Add-A	1 518,1	1 436,3	1 403,5	1 456,4	1 526,1	1 438,8	1 790,2	1 763,6	1 789,4	1 637,0	1 655,0	1 598,8
	2 244,9	2 248,0	2 274,6	2 292,1	2 322,3	2 339,1	2 345,4	2 343,3	2 325,4	2 297,3	2 269,4	2 248,0
A-B	1 384,0	1 305,7	1 302,7	1 374,9	1 477,9	1 408,9	1 767,1	1 738,3	1 744,6	1 561,3	1 548,4	1 468,2
	2 227,6	2 231,2	2 262,7	2 283,5	2 319,4	2 339,5	2 347,0	2 344,5	2 323,2	2 289,7	2 256,6	2 231,2
В-С	1 236,1	1 161,6	1 191,4	1 285,1	1 424,6	1 375,9	1 741,7	1 710,3	1 695,1	1 477,8	1 430,8	1 324,1
	1 367,3	1 393,1	1 634,6	1 811,8	2 153,0	2 364,3	2 448,1	2 419,9	2 191,3	1 867,0	1 585,5	1 393,1
C-Add	1 236,1	1 161,6	1 191,4	1 285,1	1 424,6	1 375,9	1 741,7	1 710,3	1 695,1	1 477,8	1 430,8	1 324,1
	1 320,8	1 347,3	1 597,7	1 782,7	2 141,9	2 366,0	2 455,2	2 425,2	2 182,5	1 840,6	1 546,6	1 347,3

Temperature

· · · · · · · · · · · · · · · · · · ·												
	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	19,5	19,5	19,6	19,7	19,9	20,0	20,0	20,0	19,9	19,8	19,6	19,5
A-B	19,4	19,4	19,6	19,7	19,9	20,0	20,1	20,0	19,9	19,7	19,5	19,4
B-C	19,2	19,3	19,5	19,6	19,9	20,0	20,1	20,1	19,9	19,7	19,4	19,3
C-Add	11,6	11,9	14,4	16,0	18,7	20,2	20,8	20,6	19,0	16,4	13,9	11,9
Add-Esterno	11,1	11,4	14,0	15,7	18,6	20,2	20,8	20,6	18,9	16,2	13,5	11,4

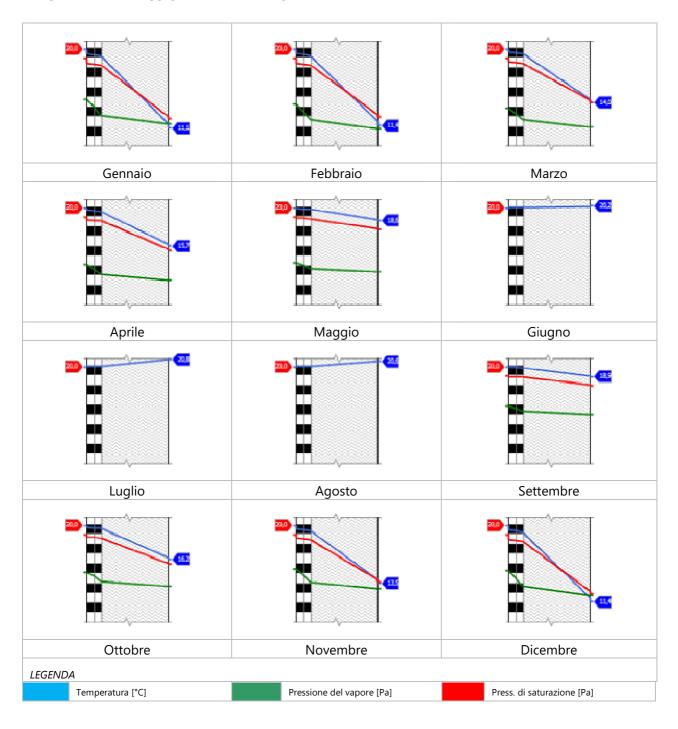
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente

Gc: 0,0000 kg/m²


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 kg/m²

Esito della verifica di condensa interstiziale: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

|--|--|--|

Massa della struttura per metro quadrato di superficie 33 kg/m²

Valore minimo di massa superficiale 230 kg/m²

NO

Condizioni al contorno

Esito della verifica di massa

Comune Concesio

Orientamento N

Colorazione Chiaro

Mese massima insolazione giugno

Temperatura media nel mese di massima insolazione

Temperatura massima estiva

Escursione giorno più caldo dell'anno 18,1 °C

Irradianza mensile massima sul piano orizzontale 284,72 W/m²

Inerzia termica

Sfasamento dell'onda termica 3h 34'

Fattore di attenuazione 0,8709

Capacità termica interna C1 30,2 kJ/m²K

Capacità termica esterna C2 6,4 kJ/m²K

Ammettenza interna oraria 16,1 W/m²K

Ammettenza interna 2,1 W/m²K

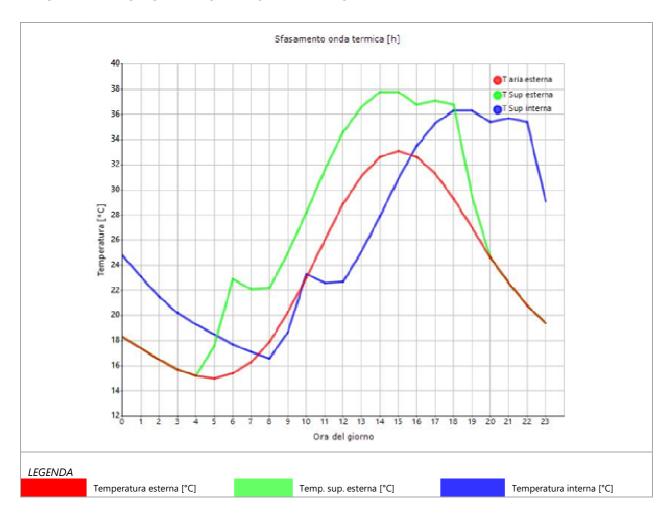
Ammettenza esterna oraria 14,6 W/m²K

Ammettenza esterna 0,4 W/m²K

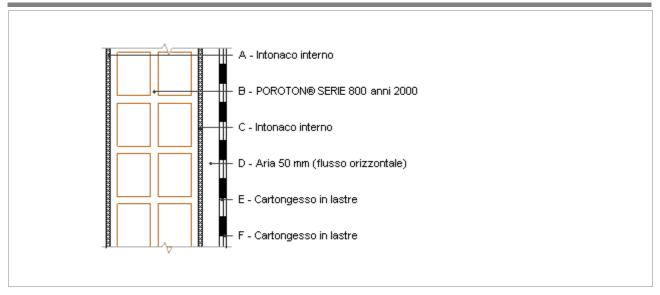
Trasmittanza periodica Y 0,217 W/m²K

Valore limite Ylim 0,100 W/m²K

Classificazione normativa

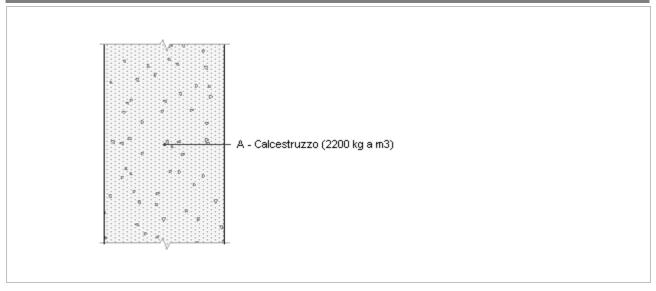

Esito della verifica di inerzia NO

	Temperatura esterna	Irradiazione solare	Temp. sup. esterna	Temp interna
	giorno più caldo Te	giorno più caldo le	giorno più caldo Te,sup	giorno più caldo Ti
Ora	°C	W/m ²	°C	°C
0:00	18,27	0,00	18,27	24,80
1:00	17,36	0,00	17,36	23,06
2:00	16,46	0,00	16,46	21,49
3:00	15,73	0,00	15,73	20,23
4:00	15,19	0,00	15,19	19,28
5:00	15,01	66,40	17,60	18,49
6:00	15,37	191,80	22,85	17,70
7:00	16,28	149,00	22,09	17,07
8:00	17,90	109,20	22,17	16,60
9:00	20,26	120,80	24,97	18,70
10:00	22,97	133,20	28,17	23,27
11:00	26,05	141,40	31,57	22,61
12:00	28,95	144,20	34,57	22,68
13:00	31,12	141,40	36,63	25,12
14:00	32,57	133,20	37,76	27,90
15:00	33,11	120,80	37,82	30,86
16:00	32,57	109,20	36,83	33,48
17:00	31,30	149,00	37,11	35,28
18:00	29,31	191,80	36,79	36,26


20,4 °C 33,1 °C

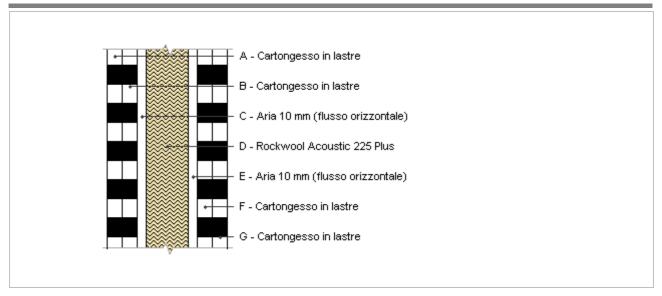
19:00	26,95	66,40	29,55	36,31
20:00	24,60	0,00	24,60	35,44
21:00	22,61	0,00	22,61	35,69
22:00	20,80	0,00	20,80	35,41
23:00	19,35	0,00	19,35	29,10

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA


MI04d - AUI - 340 - Parete interna verso palestra

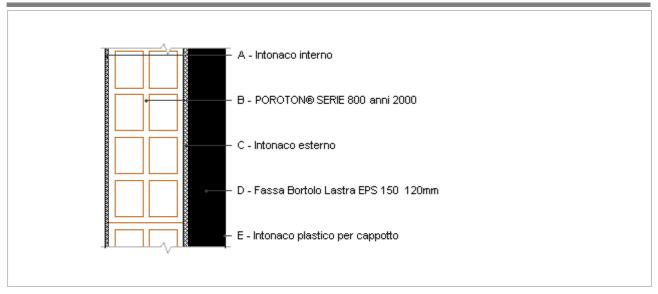
Spessore	340,0 mm	Trasmittanza	0,672 W/m ² K	
Resistenza	1,488 m ² K/W	Massa superf.	231 kg/m²	
Tipologia	Parete			
Descrizione				

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Intonaco interno	10,0	0,700	0,014	1 400	1,00	11,1
В	POROTON® SERIE 800 anni 2000	250,0	0,270	0,926	850	1,00	10,0
С	Intonaco interno	10,0	0,700	0,014	1 400	1,00	11,1
D	Aria 50 mm (flusso orizzontale)	50,0	0,280	0,179	1	1,00	1,0
Е	Cartongesso in lastre	10,0	0,210	0,048	900	1,30	8,7
F	Cartongesso in lastre	10,0	0,210	0,048	900	1,30	8,7
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
	TOTALE	340,0		1,488			


MUR01E - TER - 300 - Locali non riscaldati

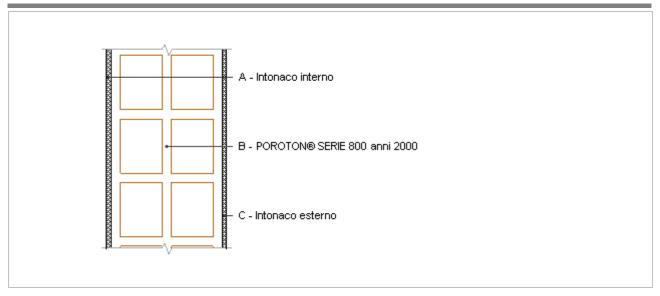
Spessore	300,0 mm	Trasmittanza	3,207 W/m ² K	
Resistenza	0,312 m ² K/W	Massa superf.	660 kg/m²	
Tipologia	Parete			
Descrizione				

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
	Descrizione	S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Calcestruzzo (2200 kg a m3)	300,0	1,650	0,182	2 200	1,00	70,0
	TOTALE	300,0		0,312			


MUR01i - INT - 100 - Parete divisoria

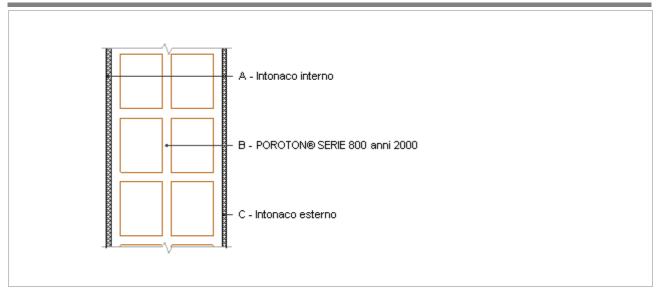
Spessore	100,0 mm	Trasmittanza	0,564 W/m ² K	
Resistenza	1,773 m ² K/W	Massa superf.	48 kg/m²	
Tipologia	Parete			
Descrizione				

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
В	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
С	Aria 10 mm (flusso orizzontale)	7,5	0,070	0,107	1	1,00	1,0
D	Rockwool Acoustic 225 Plus	35,0	0,033	1,061	90	1,03	1,0
Е	Aria 10 mm (flusso orizzontale)	7,5	0,070	0,107	1	1,00	1,0
F	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
G	Cartongesso in lastre	12,5	0,210	0,060	900	1,30	8,7
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
	TOTALE	100,0		1,773			


MUR02E - EST - 400 - Parete blocco palestra esistente

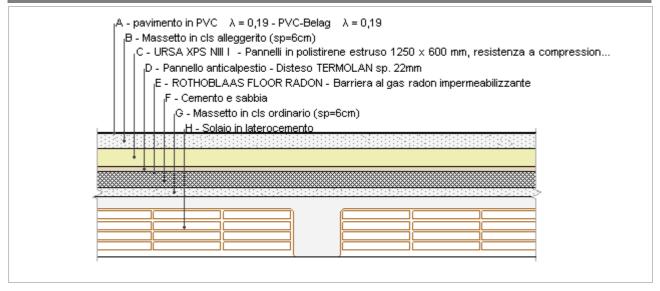
Spessore	400,0 mm	Trasmittanza	0,209 W/m²K
Resistenza	4,778 m ² K/W	Massa superf.	215 kg/m²
Tipologia	Parete		
Descrizione			

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
	Descrizione	S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Intonaco interno	10,0	0,700	0,014	1 400	1,00	11,1
В	POROTON® SERIE 800 anni 2000	250,0	0,270	0,926	850	1,00	10,0
С	Intonaco esterno	15,0	0,900	0,017	1 800	1,00	16,7
D	Fassa Bortolo Lastra EPS 150 120mm	120,0	0,033	3,636	24	1,45	50,0
E	Intonaco plastico per cappotto	5,0	0,330	0,015	1 300	0,84	32,0
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-
	TOTALE	400,0		4,778			


MUR03E - ZNR vs EST - Parete perimetro copertura

Spessore	270,0 mm	Trasmittanza	0,892 W/m ² K	
Resistenza	1,121 m ² K/W	Massa superf.	213 kg/m²	
Tipologia	Parete			
Descrizione				

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μυ
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Intonaco interno	10,0	0,700	0,014	1 400	1,00	11,1
В	POROTON® SERIE 800 anni 2000	250,0	0,270	0,926	850	1,00	10,0
С	Intonaco esterno	10,0	0,900	0,011	1 800	1,00	16,7
	Adduttanza esterna (flusso orizzontale)	-	-	0,040	-	-	-
	TOTALE	270,0		1,121			


MUR04i - INT - 270 - Parete laterizio esistente

Spessore	270,0 mm	Trasmittanza	0,825 W/m ² K
Resistenza	1,211 m ² K/W	Massa superf.	213 kg/m²
Tipologia	Parete		
Descrizione			

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
Α	Intonaco interno	10,0	0,700	0,014	1 400	1,00	11,1
В	POROTON® SERIE 800 anni 2000	250,0	0,270	0,926	850	1,00	10,0
C	Intonaco esterno	10,0	0,900	0,011	1 800	1,00	16,7
	Adduttanza interna (flusso orizzontale)	-	-	0,130	-	-	-
	TOTALE	270,0		1,211			

S01Pa - ZNR - 540 - Pavimento piano terra

Spessore	541,5 mm	Trasmittanza	0,255 W/m ² K
Resistenza	3,926 m ² K/W	Massa superf.	729 kg/m²
Tipologia	Pavimento		
Descrizione			

Stratigrafia

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
Α	pavimento in PVC $\lambda = 0.19$ - PVC-Belag $\lambda = 0.19$	3,5	0,190	0,018	1 500	1,08	0,0
В	Massetto in cls alleggerito (sp=6cm)	65,0	0,580	0,112	900	1,00	3,3
С	URSA XPS NIII I - Pannelli in polistirene estruso 1250 x 600 mm, resistenza a compressione 300 kPa, superfici liscie con pelle e bordi laterali dritti, per isolamento sotto pavimento e sotto pavimento radiante.	80,0	0,035	2,286	30	0,35	150,0
D	Pannello anticalpestio - Disteso TERMOLAN sp. 22mm	22,0	0,031	0,710	38	0,35	15,0
Е	ROTHOBLAAS FLOOR RADON - Barriera al gas radon impermeabilizzante	1,0	0,400	0,003	360	0,43	200,0
F	Cemento e sabbia	70,0	1,000	0,070	1 800	1,00	6,0
G	Massetto in cls ordinario (sp=6cm)	40,0	1,060	0,038	1 700	1,00	3,3
Н	Solaio in laterocemento	260,0	0,743	0,350	1 800	1,00	5,0
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
	TOTALE	541,5		3,926			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al contorno e dati climatici								
Comune	Concesio							
Tipo di calcolo	Classi di concentrazione							
Verso	Zona non riscaldata							
Coeff. btr,x	0,0							
Volume	- m ³							
Classe edificio	Edifici con indice di affollamento non noto							
Produz. nota	- kg/h							

Mese	θі	фі	θе	φе	n
gennaio	20,0 °C	- %	20,0 °C	93,6 %	0,5 1/h
febbraio	20,0 °C	- %	20,0 °C	86,2 %	0,5 1/h
marzo	20,0 °C	- %	20,0 °C	74,6 %	0,5 1/h
aprile	20,0 °C	- %	20,0 °C	72,1 %	0,5 1/h
maggio	20,0 °C	- %	20,0 °C	66,5 %	0,5 1/h
giugno	20,0 °C	- %	20,0 °C	58,2 %	0,5 1/h
luglio	20,0 °C	- %	20,0 °C	70,9 %	0,5 1/h
agosto	20,0 °C	- %	20,0 °C	70,5 %	0,5 1/h
settembre	20,0 °C	- %	20,0 °C	77,7 %	0,5 1/h
ottobre	20,0 °C	- %	20,0 °C	80,3 %	0,5 1/h
novembre	20,0 °C	- %	20,0 °C	92,5 %	0,5 1/h
dicembre	20,0 °C	- %	20,0 °C	98,3 %	0,5 1/h

Condizione	θі	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	20,00 °C	2 187,20 Pa
ESTIVA	20,00 °C	1 519,00 Pa	20,00 °C	2 187,20 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 49,719 Pa.

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).

La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 49,719 Pa.

Verifica di formazione di muffe superficiali Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	20,0 °C	1876,24 Pa	100 Pa	1976,24 Pa	20 °C	65 %
novembre	20,0 °C	2161,97 Pa	100 Pa	2261,97 Pa	20 °C	65 %
dicembre	20,0 °C	2296,67 Pa	100 Pa	2396,67 Pa	20 °C	65 %
gennaio	20,0 °C	2187,23 Pa	100 Pa	2287,23 Pa	20 °C	65 %
febbraio	20,0 °C	2014,76 Pa	100 Pa	2114,76 Pa	20 °C	65 %
marzo	20,0 °C	1742,63 Pa	100 Pa	1842,63 Pa	20 °C	65 %
aprile	20,0 °C	1684,61 Pa	100 Pa	1784,61 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm
ottobre	20,9°C	0
novembre	23,12°C	0
dicembre	24,08°C	0
gennaio	23,3°C	0
febbraio	22,01°C	0
marzo	19,77°C	0
aprile	19,25°C	0

θe: temperatura esterna
Pe: pressione esterna
ΔP: variazione di pressione
Pi: pressione interna
θi: temperatura interna

φi: umidità relativa interna θsi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,0000 (mese di Ottobre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	2 287,2	2 114,8	1 842,6	1 784,6	1 654,3	1 459,0	1 757,8	1 748,1	1 915,1	1 976,2	2 262,0	2 396,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
Add-A	2 287,2	2 114,8	1 842,6	1 784,6	1 654,3	1 459,0	1 757,8	1 748,1	1 915,1	1 976,2	2 262,0	2 396,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
A-B	2 285,9	2 113,4	1 841,3	1 783,3	1 653,0	1 457,6	1 756,4	1 746,8	1 913,8	1 974,9	2 260,6	2 395,3
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
В-С	2 211,7	2 039,3	1 767,1	1 709,1	1 578,8	1 383,4	1 682,3	1 672,6	1 839,6	1 900,7	2 186,5	2 321,2
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
C-D	2 209,7	2 037,2	1 765,1	1 707,1	1 576,8	1 381,4	1 680,2	1 670,5	1 837,6	1 898,7	2 184,4	2 319,1
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
D-E	2 208,5	2 036,0	1 763,8	1 705,8	1 575,6	1 380,2	1 679,0	1 669,3	1 836,3	1 897,5	2 183,2	2 317,9
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
E-F	2 204,1	2 031,7	1 759,5	1 701,5	1 571,2	1 375,8	1 674,7	1 665,0	1 832,0	1 893,1	2 178,9	2 313,6
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
F-G	2 203,3	2 030,8	1 758,7	1 700,7	1 570,4	1 375,0	1 673,8	1 664,2	1 831,2	1 892,3	2 178,0	2 312,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
G-H	2 187,2	2 014,8	1 742,6	1 684,6	1 554,3	1 359,0	1 657,8	1 648,1	1 815,1	1 876,2	2 162,0	2 296,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
H-Add	2 187,2	2 014,8	1 742,6	1 684,6	1 554,3	1 359,0	1 657,8	1 648,1	1 815,1	1 876,2	2 162,0	2 296,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0

Temperature

Cilipciat	emperature											
	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
A-B	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
В-С	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
C-D	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
D-E	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
E-F	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
F-G	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
G-H	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
H-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-Esterno	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0

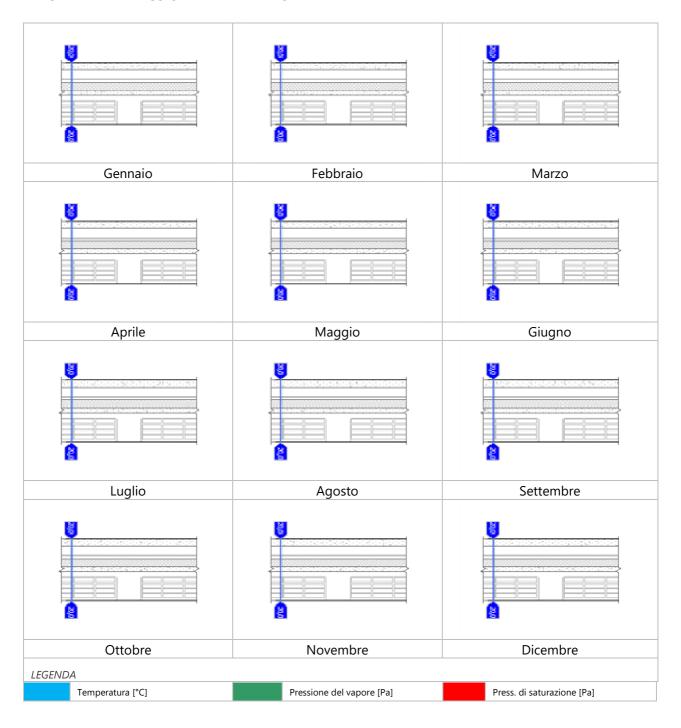
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente

Gc: 0,0000 kg/m²


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 kg/m²

Esito della verifica di condensa interstiziale: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

Massa della struttura per metro quadrato di superficie	729
--	-----

Valore minimo di massa superficiale 230 kg/m²

kg/m²

284,72 W/m²

Esito della verifica di massa OK

Condizioni al contorno

Verifica di massa

 Comune
 Concesio

 Orientamento
 N

 Colorazione
 Chiaro

Mese massima insolazione giugno

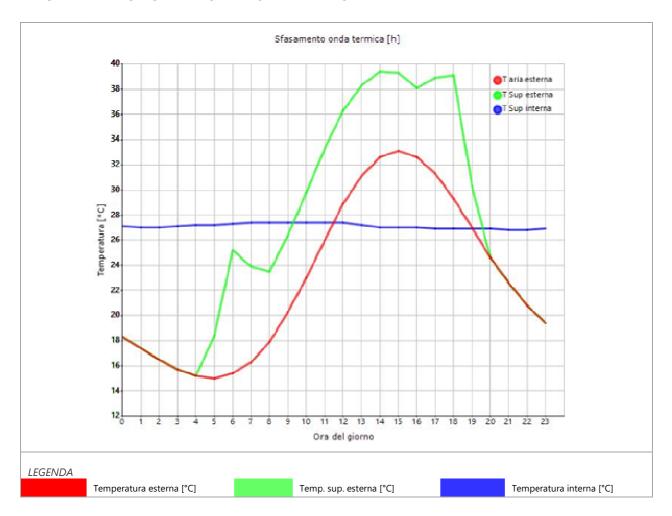
Irradianza mensile massima sul piano orizzontale

Temperatura media nel mese di massima insolazione 20,4 °C

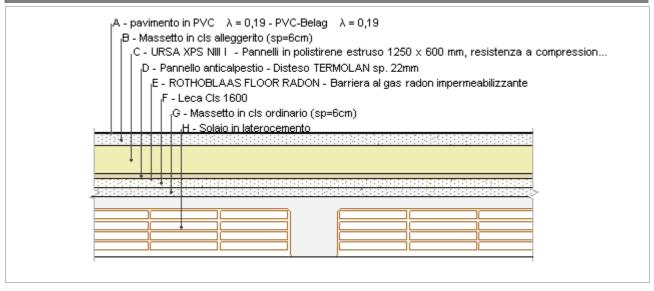
Temperatura massima estiva $33,1 \,^{\circ}\text{C}$ Escursione giorno più caldo dell'anno $18,1 \,^{\circ}\text{C}$

Inerzia termica

Classificazione normativa


Sfasamento dell'onda termica 17h 56' Fattore di attenuazione 0,0228 Capacità termica interna C1 43,2 kJ/m²K 54,5 kJ/m²K Capacità termica esterna C2 14,9 W/m²K Ammettenza interna oraria Ammettenza interna 3,1 W/m²K 13,1 W/m²K Ammettenza esterna oraria Ammettenza esterna 4,0 W/m²K Trasmittanza periodica Y 0,006 W/m²K Valore limite Ylim 0,180 W/m²K

Esito della verifica di inerzia OK


	Temperatura esterna giorno più caldo Te	Irradiazione solare giorno più caldo le	Temp. sup. esterna giorno più caldo Te,sup	Temp interna giorno più caldo Ti
Ora	°C	W/m ²	°C	°C
0:00	18,27	0,00	18,27	27,06
1:00	17,36	0,00	17,36	27,03
2:00	16,46	0,00	16,46	27,02
3:00	15,73	0,00	15,73	27,09
4:00	15,19	0,00	15,19	27,16
5:00	15,01	66,40	18,40	27,24
6:00	15,37	191,80	25,16	27,31
7:00	16,28	149,00	23,88	27,36
8:00	17,90	109,20	23,48	27,38
9:00	20,26	120,80	26,42	27,38
10:00	22,97	133,20	29,77	27,36
11:00	26,05	141,40	33,26	27,37
12:00	28,95	144,20	36,30	27,38
13:00	31,12	141,40	38,33	27,18
14:00	32,57	133,20	39,36	27,05
15:00	33,11	120,80	39,27	27,00
16:00	32,57	109,20	38,14	26,96
17:00	31,30	149,00	38,90	26,93
18:00	29,31	191,80	39,09	26,90

19:00	26,95	66,40	30,34	26,88
20:00	24,60	0,00	24,60	26,86
21:00	22,61	0,00	22,61	26,84
22:00	20,80	0,00	20,80	26,83
23:00	19,35	0,00	19,35	26,90

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA

S01Pb - ZNR - 540 - Pavimento piano terra zona scuola elementare

Spessore	541,5 mm	Trasmittanza	0,198 W/m ² K	
Resistenza	5,056 m ² K/W	Massa superf.	660 kg/m²	
Tipologia	Pavimento			
Descrizione				

Stratigrafia

	Descrizione		Conduttività	Resistenza	Densità	Capacità	Fattore
	DESCRIZIONE	S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
Α	pavimento in PVC $\lambda = 0.19$ - PVC-Belag $\lambda = 0.19$	3,5	0,190	0,018	1 500	1,08	0,0
В	Massetto in cls alleggerito (sp=6cm)	55,0	0,580	0,095	900	1,00	3,3
С	URSA XPS NIII I - Pannelli in polistirene estruso 1250 x 600 mm, resistenza a compressione 300 kPa, superfici liscie con pelle e bordi laterali dritti, per isolamento sotto pavimento e sotto pavimento radiante.	120,0	0,035	3,429	30	0,35	150,0
D	Pannello anticalpestio - Disteso TERMOLAN sp. 22mm	22,0	0,031	0,710	38	0,35	15,0
Е	ROTHOBLAAS FLOOR RADON - Barriera al gas radon impermeabilizzante	1,0	0,400	0,003	360	0,43	200,0
F	Leca Cls 1600	40,0	0,540	0,074	1 600	1,00	8,0
G	Massetto in cls ordinario (sp=6cm)	40,0	1,060	0,038	1 700	1,00	3,3
Н	Solaio in laterocemento	260,0	0,743	0,350	1 800	1,00	5,0
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
	TOTALE	541,5		5,056			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al contorno e dati climatici								
Comune	Concesio							
Tipo di calcolo	Classi di concentrazione							
Verso	Zona non riscaldata							
Coeff. btr,x	0,0							
Volume	- m ³							
Classe edificio	Edifici con indice di affollamento non noto							
Produz. nota	- kg/h							

Mese	θі	фі	θе	фе	n
gennaio	20,0 °C	- %	20,0 °C	93,6 %	0,5 1/h
febbraio	20,0 °C	- %	20,0 °C	86,2 %	0,5 1/h
marzo	20,0 °C	- %	20,0 °C	74,6 %	0,5 1/h
aprile	20,0 °C	- %	20,0 °C	72,1 %	0,5 1/h
maggio	20,0 °C	- %	20,0 °C	66,5 %	0,5 1/h
giugno	20,0 °C	- %	20,0 °C	58,2 %	0,5 1/h
luglio	20,0 °C	- %	20,0 °C	70,9 %	0,5 1/h
agosto	20,0 °C	- %	20,0 °C	70,5 %	0,5 1/h
settembre	20,0 °C	- %	20,0 °C	77,7 %	0,5 1/h
ottobre	20,0 °C	- %	20,0 °C	80,3 %	0,5 1/h
novembre	20,0 °C	- %	20,0 °C	92,5 %	0,5 1/h
dicembre	20,0 °C	- %	20,0 °C	98,3 %	0,5 1/h

Condizione	θі	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	20,00 °C	2 187,20 Pa
ESTIVA	20,00 °C	1 519,00 Pa	20,00 °C	2 187,20 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 49,719 Pa.

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).

La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 49,719 Pa.

Verifica di formazione di muffe superficiali Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	20,0 °C	1876,24 Pa	100 Pa	1976,24 Pa	20 °C	65 %
novembre	20,0 °C	2161,97 Pa	100 Pa	2261,97 Pa	20 °C	65 %
dicembre	20,0 °C	2296,67 Pa	100 Pa	2396,67 Pa	20 °C	65 %
gennaio	20,0 °C	2187,23 Pa	100 Pa	2287,23 Pa	20 °C	65 %
febbraio	20,0 °C	2014,76 Pa	100 Pa	2114,76 Pa	20 °C	65 %
marzo	20,0 °C	1742,63 Pa	100 Pa	1842,63 Pa	20 °C	65 %
aprile	20,0 °C	1684,61 Pa	100 Pa	1784,61 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm
ottobre	20,9°C	0
novembre	23,12°C	0
dicembre	24,08°C	0
gennaio	23,3°C	0
febbraio	22,01°C	0
marzo	19,77°C	0
aprile	19,25°C	0

θe: temperatura esterna
Pe: pressione esterna
ΔP: variazione di pressione
Pi: pressione interna
θi: temperatura interna
φi: umidità relativa interna

hetasi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,0000 (mese di Ottobre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	2 287,2	2 114,8	1 842,6	1 784,6	1 654,3	1 459,0	1 757,8	1 748,1	1 915,1	1 976,2	2 262,0	2 396,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
Add-A	2 287,2	2 114,8	1 842,6	1 784,6	1 654,3	1 459,0	1 757,8	1 748,1	1 915,1	1 976,2	2 262,0	2 396,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
A-B	2 286,4	2 113,9	1 841,8	1 783,8	1 653,5	1 458,1	1 756,9	1 747,3	1 914,3	1 975,4	2 261,1	2 395,8
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
В-С	2 203,7	2 031,2	1 759,1	1 701,1	1 570,8	1 375,4	1 674,2	1 664,6	1 831,6	1 892,7	2 178,4	2 313,1
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
C-D	2 202,2	2 029,7	1 757,6	1 699,6	1 569,3	1 373,9	1 672,7	1 663,0	1 830,0	1 891,2	2 176,9	2 311,6
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
D-E	2 201,3	2 028,8	1 756,7	1 698,6	1 568,4	1 373,0	1 671,8	1 662,1	1 829,1	1 890,3	2 176,0	2 310,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
E-F	2 199,8	2 027,3	1 755,2	1 697,2	1 566,9	1 371,5	1 670,3	1 660,6	1 827,7	1 888,8	2 174,5	2 309,2
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
F-G	2 199,2	2 026,7	1 754,6	1 696,6	1 566,3	1 370,9	1 669,7	1 660,0	1 827,0	1 888,2	2 173,9	2 308,6
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
G-H	2 187,2	2 014,8	1 742,6	1 684,6	1 554,3	1 359,0	1 657,8	1 648,1	1 815,1	1 876,2	2 162,0	2 296,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
H-Add	2 187,2	2 014,8	1 742,6	1 684,6	1 554,3	1 359,0	1 657,8	1 648,1	1 815,1	1 876,2	2 162,0	2 296,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0

Temperature

remperat	eniperature											
	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
A-B	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
B-C	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
C-D	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
D-E	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
E-F	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
F-G	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
G-H	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
H-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-Esterno	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0

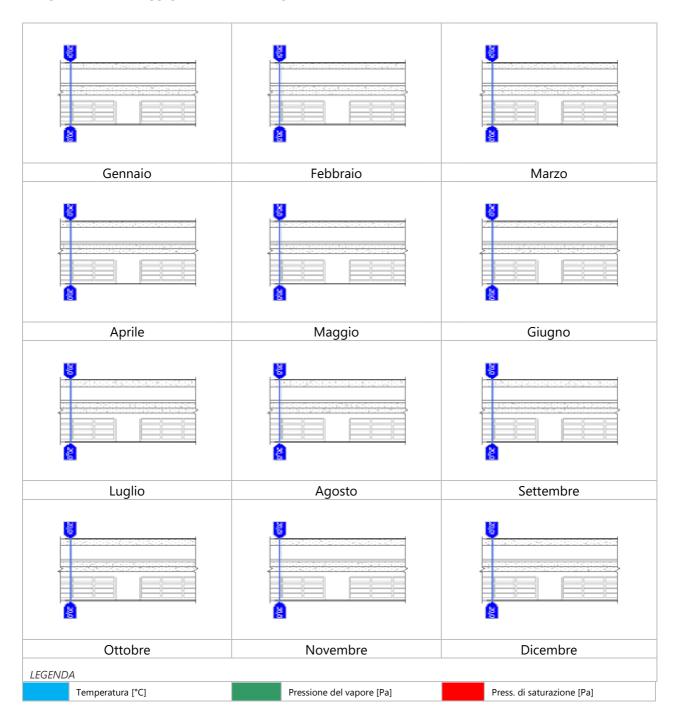
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B								-				
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente

Gc: 0,0000 kg/m²


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 kg/m²

Esito della verifica di condensa interstiziale: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

Massa della struttura per metro quadrato di superficie	660 kg/m²
Valore minimo di massa superficiale	230 kg/m²

Esito della verifica di massa OK

Condizioni al contorno

Verifica di massa

Comune Concesio

Orientamento N

Colorazione Chiaro

Mese massima insolazione giugno

Temperatura media nel mese di massima insolazione 20,4 °C

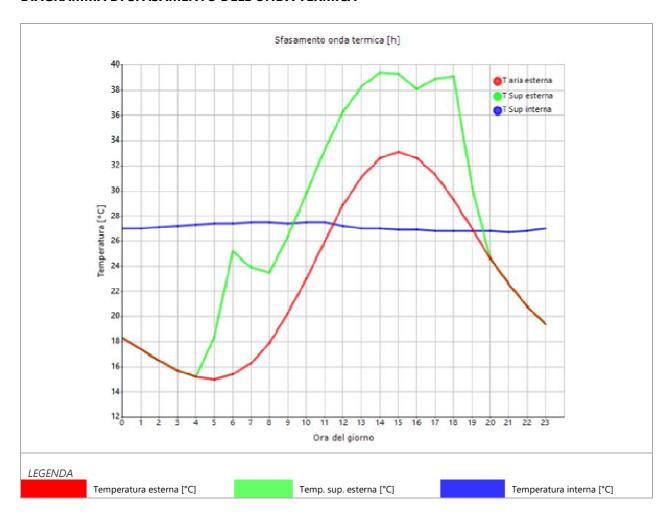
Temperatura massima estiva 33,1 °C

Temperatura massima estiva

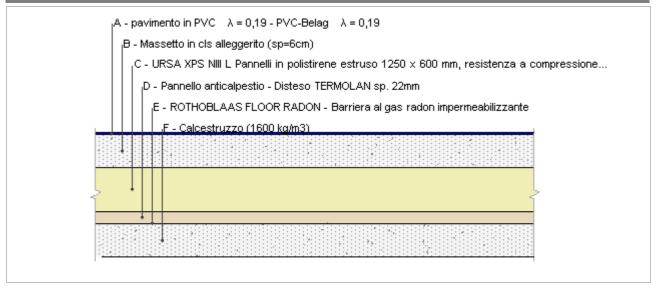
Escursione giorno più caldo dell'anno

Irradianza mensile massima sul piano orizzontale

284,72 W/m²

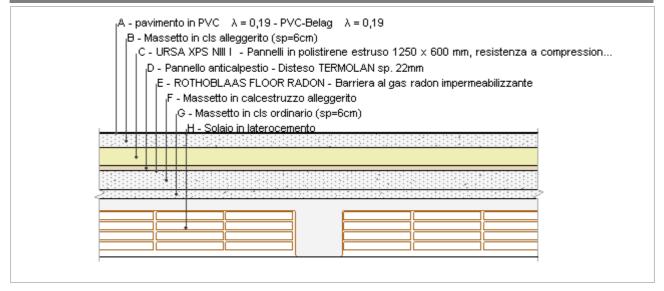

Inerzia termica

Sfasamento dell'onda termica 16h 57' Fattore di attenuazione 0,0308 Capacità termica interna C1 40,8 kJ/m²K Capacità termica esterna C2 54,5 kJ/m²K 15,2 W/m²K Ammettenza interna oraria Ammettenza interna 3,0 W/m²K 13,1 W/m²K Ammettenza esterna oraria Ammettenza esterna 4,0 W/m²K Trasmittanza periodica Y 0,006 W/m²K Valore limite Ylim 0,180 W/m²K Classificazione normativa Esito della verifica di inerzia OK


	Temperatura esterna	Irradiazione solare	Temp. sup. esterna	Temp interna
	giorno più caldo Te	giorno più caldo le	giorno più caldo Te,sup	giorno più caldo Ti
Ora	°C	W/m²	°C	°C
0:00	18,27	0,00	18,27	27,00
1:00	17,36	0,00	17,36	26,99
2:00	16,46	0,00	16,46	27,08
3:00	15,73	0,00	15,73	27,19
4:00	15,19	0,00	15,19	27,29
5:00	15,01	66,40	18,40	27,39
6:00	15,37	191,80	25,16	27,45
7:00	16,28	149,00	23,88	27,48
8:00	17,90	109,20	23,48	27,48
9:00	20,26	120,80	26,42	27,44
10:00	22,97	133,20	29,77	27,47
11:00	26,05	141,40	33,26	27,47
12:00	28,95	144,20	36,30	27,20
13:00	31,12	141,40	38,33	27,03
14:00	32,57	133,20	39,36	26,97
15:00	33,11	120,80	39,27	26,91
16:00	32,57	109,20	38,14	26,87
17:00	31,30	149,00	38,90	26,83
18:00	29,31	191,80	39,09	26,80

19:00	26,95	66,40	30,34	26,78
20:00	24,60	0,00	24,60	26,75
21:00	22,61	0,00	22,61	26,74
22:00	20,80	0,00	20,80	26,84
23:00	19,35	0,00	19,35	27,04

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA


S02P - TER - 22 - Solaio piano terra mensa

Spessore	225,4 mm	Trasmittanza	0,297 W/m ² K	
Resistenza	3,368 m ² K/W	Massa superf.	158 kg/m²	
Tipologia	Pavimento			
Descrizione				

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
	Descrizione	S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
Α	pavimento in PVC $\lambda = 0.19$ - PVC-Belag $\lambda = 0.19$	3,0	0,190	0,016	1 500	1,08	0,0
В	Massetto in cls alleggerito (sp=6cm)	60,0	0,580	0,103	900	1,00	3,3
С	URSA XPS NIII L Pannelli in polistirene estruso 1250 x 600 mm, resistenza a compressione 300 kPa, superfici liscie con pelle e bordi laterali a battente, per tetti piani pedonabili con pavimentazione su massetto armato, tetti non pedonabili, tett	80,0	0,035	2,286	30	0,35	150,0
D	Pannello anticalpestio - Disteso TERMOLAN sp. 22mm	22,0	0,031	0,710	38	0,35	15,0
Е	ROTHOBLAAS FLOOR RADON - Barriera al gas radon impermeabilizzante	0,4	0,400	0,001	360	0,43	200,0
F	Calcestruzzo (1600 kg/m3)	60,0	0,730	0,082	1 600	0,88	3,3
	TOTALE	225,4		3,368			

S03Pa - ZNR - 540 - Pavimento solaio auditorium

Spessore	556,5 mm	Trasmittanza	0,254 W/m ² K	
Resistenza	3,935 m ² K/W	Massa superf.	739 kg/m²	
Tipologia	Pavimento			
Descrizione				

Stratigrafia

	Descrizione		Conduttività	Resistenza	Densità	Capacità	Fattore
	Descrizione	S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
Α	pavimento in PVC λ = 0,19 - PVC-Belag λ = 0,19	3,5	0,190	0,018	1 500	1,08	0,0
В	Massetto in cls alleggerito (sp=6cm)	65,0	0,580	0,112	900	1,00	3,3
С	URSA XPS NIII I - Pannelli in polistirene estruso 1250 x 600 mm, resistenza a compressione 300 kPa, superfici liscie con pelle e bordi laterali dritti, per isolamento sotto pavimento e sotto pavimento radiante.	80,0	0,035	2,286	30	0,35	150,0
D	Pannello anticalpestio - Disteso TERMOLAN sp. 22mm	22,0	0,031	0,710	38	0,35	15,0
E	ROTHOBLAAS FLOOR RADON - Barriera al gas radon impermeabilizzante	1,0	0,400	0,003	360	0,43	200,0
F	Massetto in calcestruzzo alleggerito	85,0	1,080	0,079	1 600	1,00	3,3
G	Massetto in cls ordinario (sp=6cm)	40,0	1,060	0,038	1 700	1,00	3,3
Н	Solaio in laterocemento	260,0	0,743	0,350	1 800	1,00	5,0
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
	TOTALE	556,5		3,935			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al contorno e dati climatici						
Comune	Concesio					
Tipo di calcolo	Classi di concentrazione					
Verso	Zona non riscaldata					
Coeff. btr,x	0,0					
Volume	- m ³					
Classe edificio	Edifici con indice di affollamento non noto					
Produz. nota	- kg/h					

Mese	θі	φi	θе	φе	n
gennaio	20,0 °C	- %	20,0 °C	93,6 %	0,5 1/h
febbraio	20,0 °C	- %	20,0 °C	86,2 %	0,5 1/h
marzo	20,0 °C	- %	20,0 °C	74,6 %	0,5 1/h
aprile	20,0 °C	- %	20,0 °C	72,1 %	0,5 1/h
maggio	20,0 °C	- %	20,0 °C	66,5 %	0,5 1/h
giugno	20,0 °C	- %	20,0 °C	58,2 %	0,5 1/h
luglio	20,0 °C	- %	20,0 °C	70,9 %	0,5 1/h
agosto	20,0 °C	- %	20,0 °C	70,5 %	0,5 1/h
settembre	20,0 °C	- %	20,0 °C	77,7 %	0,5 1/h
ottobre	20,0 °C	- %	20,0 °C	80,3 %	0,5 1/h
novembre	20,0 °C	- %	20,0 °C	92,5 %	0,5 1/h
dicembre	20,0 °C	- %	20,0 °C	98,3 %	0,5 1/h

Condizione	θі	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	20,00 °C	2 187,20 Pa
ESTIVA	20,00 °C	1 519,00 Pa	20,00 °C	2 187,20 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 49,719 Pa.

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).

La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 49,719 Pa.

Verifica di formazione di muffe superficiali Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	20,0 °C	1876,24 Pa	100 Pa	1976,24 Pa	20 °C	65 %
novembre	20,0 °C	2161,97 Pa	100 Pa	2261,97 Pa	20 °C	65 %
dicembre	20,0 °C	2296,67 Pa	100 Pa	2396,67 Pa	20 °C	65 %
gennaio	20,0 °C	2187,23 Pa	100 Pa	2287,23 Pa	20 °C	65 %
febbraio	20,0 °C	2014,76 Pa	100 Pa	2114,76 Pa	20 °C	65 %
marzo	20,0 °C	1742,63 Pa	100 Pa	1842,63 Pa	20 °C	65 %
aprile	20,0 °C	1684,61 Pa	100 Pa	1784,61 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm
ottobre	20,9°C	0
novembre	23,12°C	0
dicembre	24,08°C	0
gennaio	23,3°C	0
febbraio	22,01°C	0
marzo	19,77°C	0
aprile	19,25°C	0

θe: temperatura esterna Pe: pressione esterna ΔP: variazione di pressione Pi: pressione interna θi: temperatura interna

φi: umidità relativa interna

θsi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,0000 (mese di Ottobre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	2 287,2	2 114,8	1 842,6	1 784,6	1 654,3	1 459,0	1 757,8	1 748,1	1 915,1	1 976,2	2 262,0	2 396,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
Add-A	2 287,2	2 114,8	1 842,6	1 784,6	1 654,3	1 459,0	1 757,8	1 748,1	1 915,1	1 976,2	2 262,0	2 396,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
A-B	2 285,9	2 113,4	1 841,3	1 783,2	1 653,0	1 457,6	1 756,4	1 746,7	1 913,7	1 974,9	2 260,6	2 395,3
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
	2 209,7	2 037,3	1 765,1	1 707,1	1 576,8	1 381,5	1 680,3	1 670,6	1 837,6	1 898,7	2 184,5	2 319,2
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
C-D	2 207,6	2 035,2	1 763,0	1 705,0	1 574,7	1 379,4	1 678,2	1 668,5	1 835,5	1 896,6	2 182,4	2 317,1
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
D-E	2 206,4	2 033,9	1 761,8	1 703,7	1 573,5	1 378,1	1 676,9	1 667,2	1 834,2	1 895,4	2 181,1	2 315,8
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
E-F	2 204,6	2 032,1	1 760,0	1 702,0	1 571,7	1 376,3	1 675,1	1 665,4	1 832,4	1 893,6	2 179,3	2 314,0
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
F-G	2 203,7	2 031,3	1 759,1	1 701,1	1 570,8	1 375,4	1 674,3	1 664,6	1 831,6	1 892,7	2 178,5	2 313,2
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
G-H	2 187,2	2 014,8	1 742,6	1 684,6	1 554,3	1 359,0	1 657,8	1 648,1	1 815,1	1 876,2	2 162,0	2 296,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
H-Add	2 187,2	2 014,8	1 742,6	1 684,6	1 554,3	1 359,0	1 657,8	1 648,1	1 815,1	1 876,2	2 162,0	2 296,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0

Temperature

remperature												
	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
A-B	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
В-С	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
C-D	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
D-E	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
E-F	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
F-G	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
G-H	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
H-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-Esterno	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0

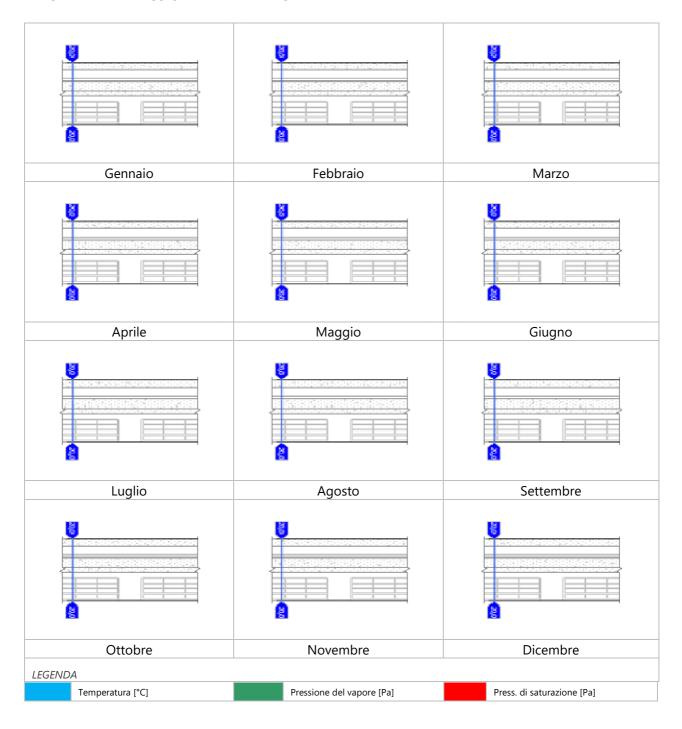
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B								-				
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente

Gc: 0,0000 kg/m²


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 kg/m²

Esito della verifica di condensa interstiziale: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

VCIII	ica ai	massa	

Massa della struttura per metro quadrato di superficie $\frac{739 \text{ kg/m}^2}{\text{Valore minimo di massa superficiale}}$ $\frac{230 \text{ kg/m}^2}{\text{m}^2}$

Esito della verifica di massa OK

Condizioni al contorno

Verifica di massa

Comune Concesio

Orientamento N Colorazione Chiaro

Mese massima insolazione giugno

Temperatura media nel mese di massima insolazione 20,4 °C

Temperatura massima estiva 33,1 $^{\circ}$ C Escursione giorno più caldo dell'anno 18,1 $^{\circ}$ C

Irradianza mensile massima sul piano orizzontale 284,72 W/m²

Inerzia termica

Sfasamento dell'onda termica 18h 08'

Fattore di attenuazione 0,0218

Capacità termica interna C1 43,2 kJ/m²K

Capacità termica esterna C2 54,5 kJ/m²K

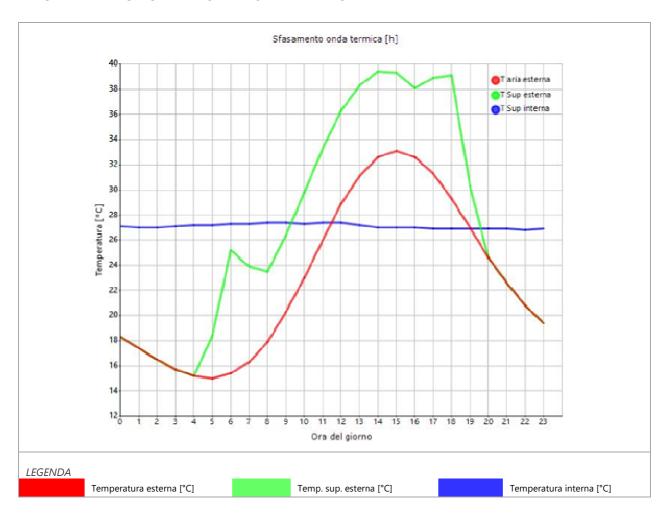
Ammettenza interna oraria 14,9 W/m²K

Ammettenza interna 3,1 W/m²K
Ammettenza esterna oraria 13,1 W/m²K

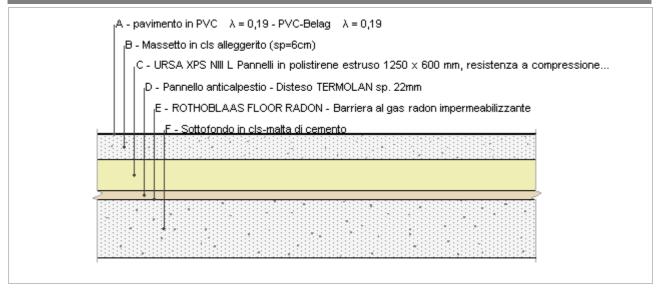
Ammettenza esterna 4,0 W/m²K

Trasmittanza periodica Y 0,006 W/m²K

Valore limite Ylim 0,180 W/m²K

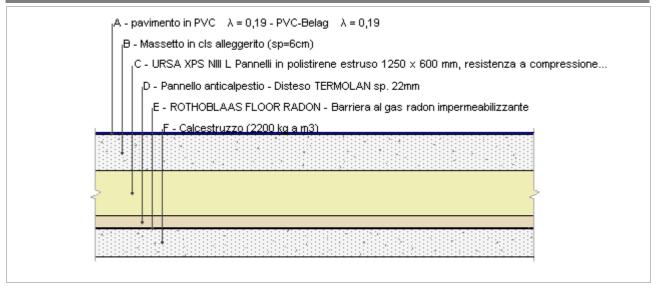

Classificazione normativa

Esito della verifica di inerzia OK


	Temperatura esterna	Irradiazione solare	Temp. sup. esterna	Temp interna
	giorno più caldo Te	giorno più caldo le	giorno più caldo Te,sup	giorno più caldo Ti
Ora	°C	W/m ²	°C	°C
0:00	18,27	0,00	18,27	27,06
1:00	17,36	0,00	17,36	27,03
2:00	16,46	0,00	16,46	27,02
3:00	15,73	0,00	15,73	27,09
4:00	15,19	0,00	15,19	27,16
5:00	15,01	66,40	18,40	27,24
6:00	15,37	191,80	25,16	27,30
7:00	16,28	149,00	23,88	27,35
8:00	17,90	109,20	23,48	27,37
9:00	20,26	120,80	26,42	27,37
10:00	22,97	133,20	29,77	27,34
11:00	26,05	141,40	33,26	27,36
12:00	28,95	144,20	36,30	27,36
13:00	31,12	141,40	38,33	27,17
14:00	32,57	133,20	39,36	27,05
15:00	33,11	120,80	39,27	27,01
16:00	32,57	109,20	38,14	26,97
17:00	31,30	149,00	38,90	26,93
18:00	29,31	191,80	39,09	26,91

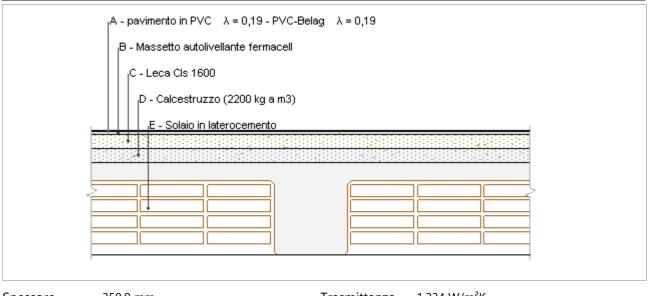
19:00	26.95	66.40	30,34	26,89
20:00	24,60	0,00	24.60	26,87
21:00	22.61	0,00	22.61	26,86
22:00	20,80	0,00	20,80	26,84
23:00	19,35	0,00	19,35	26,91

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA


S04P - TER - 320 - Pavimento auditorium parte bassa (platea)

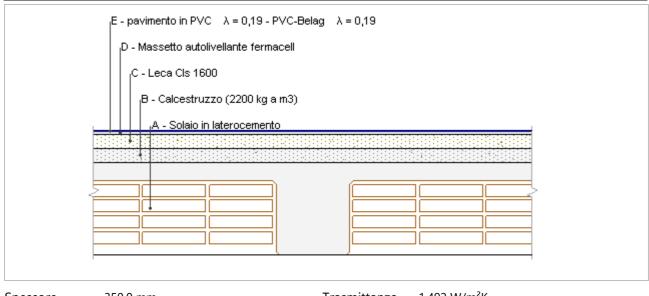
Spessore	321,0 mm	Trasmittanza	0,280 W/m ² K
Resistenza	3,573 m ² K/W	Massa superf.	367 kg/m²
Tipologia	Pavimento		
Descrizione			

	Descrizione	Spessore	Conduttività λ	Resistenza R	Densità	Capacità	Fattore
		s mm	W/(mK)	m ² K/W	ρ Kg/m³	kJ/(kgK)	μu -
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
Α	pavimento in PVC $\lambda = 0.19$ - PVC-Belag $\lambda = 0.19$	3,0	0,190	0,016	1 500	1,08	0,0
В	Massetto in cls alleggerito (sp=6cm)	65,0	0,580	0,112	900	1,00	3,3
С	URSA XPS NIII L Pannelli in polistirene estruso 1250 x 600 mm, resistenza a compressione 300 kPa, superfici liscie con pelle e bordi laterali a battente, per tetti piani pedonabili con pavimentazione su massetto armato, tetti non pedonabili, tett	80,0	0,035	2,286	30	0,35	150,0
D	Pannello anticalpestio - Disteso TERMOLAN sp. 22mm	22,0	0,031	0,710	38	0,35	15,0
Е	ROTHOBLAAS FLOOR RADON - Barriera al gas radon impermeabilizzante	1,0	0,400	0,003	360	0,43	200,0
F	Sottofondo in cls-malta di cemento	150,0	1,400	0,107	2 000	1,00	999 999,0
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
	TOTALE	321,0		3,573			


S05P - TER - 220 - Pavimento auditorium parte alta (vespaio)

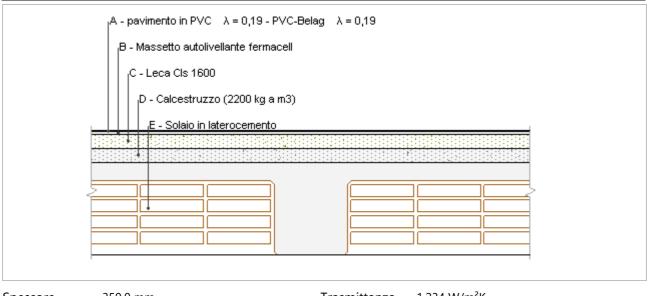
Spessore	221,0 mm	Trasmittanza	0,286 W/m ² K
Resistenza	3,496 m ² K/W	Massa superf.	177 kg/m²
Tipologia	Pavimento		
Descrizione			

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μυ
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
Α	pavimento in PVC $\lambda = 0.19$ - PVC-Belag $\lambda = 0.19$	3,0	0,190	0,016	1 500	1,08	0,0
В	Massetto in cls alleggerito (sp=6cm)	65,0	0,580	0,112	900	1,00	3,3
С	URSA XPS NIII L Pannelli in polistirene estruso 1250 x 600 mm, resistenza a compressione 300 kPa, superfici liscie con pelle e bordi laterali a battente, per tetti piani pedonabili con pavimentazione su massetto armato, tetti non pedonabili, tett	80,0	0,035	2,286	30	0,35	150,0
D	Pannello anticalpestio - Disteso TERMOLAN sp. 22mm	22,0	0,031	0,710	38	0,35	15,0
E	ROTHOBLAAS FLOOR RADON - Barriera al gas radon impermeabilizzante	1,0	0,400	0,003	360	0,43	200,0
F	Calcestruzzo (2200 kg a m3)	50,0	1,650	0,030	2 200	1,00	70,0
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
	TOTALE	221,0		3,496			


S06Pa - INT - 1040 - Pavimento P1 (verso corridoio)

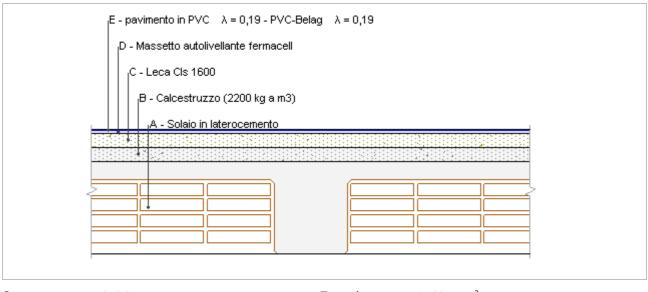
Spessore350,0 mmTrasmittanza1,234 W/m²KResistenza0,811 m²K/WMassa superf.637 kg/m²TipologiaPavimentoDescrizione

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
	Descrizione	S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
Α	pavimento in PVC λ = 0,19 - PVC-Belag λ = 0,19	3,0	0,190	0,016	1 500	1,08	0,0
В	Massetto autolivellante fermacell	7,0	1,100	0,006	1 750	0,24	1,0
С	Leca Cls 1600	40,0	0,540	0,074	1 600	1,00	8,0
D	Calcestruzzo (2200 kg a m3)	40,0	1,650	0,024	2 200	1,00	70,0
E	Solaio in laterocemento	260,0	0,743	0,350	1 800	1,00	5,0
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
	TOTALE	350,0		0,811			


S06Pa - INT - 1040 - Soffitto (corridoio) h=2.40

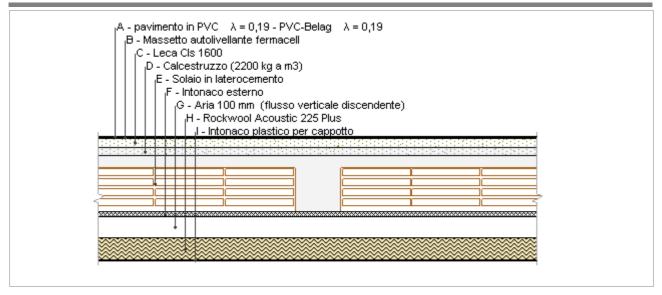
Spessore350,0 mmTrasmittanza1,492 W/m²KResistenza0,670 m²K/WMassa superf.637 kg/m²TipologiaSoffittoDescrizione

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
Α	Solaio in laterocemento	260,0	0,743	0,350	1 800	1,00	5,0
В	Calcestruzzo (2200 kg a m3)	40,0	1,650	0,024	2 200	1,00	70,0
С	Leca Cls 1600	40,0	0,540	0,074	1 600	1,00	8,0
D	Massetto autolivellante fermacell	7,0	1,100	0,006	1 750	0,24	1,0
E	pavimento in PVC $\lambda = 0.19$ - PVC-Belag $\lambda = 0.19$	3,0	0,190	0,016	1 500	1,08	0,0
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
	TOTALE	350.0		0.670			


S06Pb - INT - 470 - Pavimento P1 (verso aule)

Spessore350,0 mmTrasmittanza1,234 W/m²KResistenza0,811 m²K/WMassa superf.637 kg/m²TipologiaPavimentoDescrizione

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
Α	pavimento in PVC $\lambda = 0.19$ - PVC-Belag $\lambda = 0.19$	3,0	0,190	0,016	1 500	1,08	0,0
В	Massetto autolivellante fermacell	7,0	1,100	0,006	1 750	0,24	1,0
C	Leca Cls 1600	40,0	0,540	0,074	1 600	1,00	8,0
D	Calcestruzzo (2200 kg a m3)	40,0	1,650	0,024	2 200	1,00	70,0
Е	Solaio in laterocemento	260,0	0,743	0,350	1 800	1,00	5,0
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
	TOTALE	350.0		0.811			


S06Pb - INT - 470 - Soffitto (aule) h=2.95

Spessore350,0 mmTrasmittanza1,492 W/m²KResistenza0,670 m²K/WMassa superf.637 kg/m²TipologiaSoffittoDescrizione

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
	Descrizione	S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
Α	Solaio in laterocemento	260,0	0,743	0,350	1 800	1,00	5,0
В	Calcestruzzo (2200 kg a m3)	40,0	1,650	0,024	2 200	1,00	70,0
С	Leca Cls 1600	40,0	0,540	0,074	1 600	1,00	8,0
D	Massetto autolivellante fermacell	7,0	1,100	0,006	1 750	0,24	1,0
E	pavimento in PVC λ = 0,19 - PVC-Belag λ = 0,19	3,0	0,190	0,016	1 500	1,08	0,0
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
	TOTALE	350,0		0,670			

S06Pc - EST - 580 - Pavimento VS Esterno

Spessore	575,0 mm	Trasmittanza	0,252 W/m ² K
Resistenza	3,970 m ² K/W	Massa superf.	646 kg/m²
Tipologia	Pavimento		
Descrizione			

Stratigrafia

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
		S	λ	R	ρ	C	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
Α	pavimento in PVC $\lambda = 0.19$ - PVC-Belag $\lambda = 0.19$	3,0	0,190	0,016	1 500	1,08	0,0
В	Massetto autolivellante fermacell	7,0	1,100	0,006	1 750	0,24	1,0
С	Leca Cls 1600	40,0	0,540	0,074	1 600	1,00	8,0
D	Calcestruzzo (2200 kg a m3)	40,0	1,650	0,024	2 200	1,00	70,0
Ε	Solaio in laterocemento	260,0	0,743	0,350	1 800	1,00	5,0
F	Intonaco esterno	20,0	0,900	0,022	1 800	1,00	16,7
G	Aria 100 mm (flusso verticale discendente)	100,0	0,450	0,222	1	1,00	1,0
Н	Rockwool Acoustic 225 Plus	100,0	0,033	3,030	90	1,03	1,0
1	Intonaco plastico per cappotto	5,0	0,330	0,015	1 300	0,84	32,0
	Adduttanza esterna (flusso verticale discendente)	-	-	0,040	-	-	-
	TOTALE	575,0		3,970			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al co	Condizioni al contorno e dati climatici						
Comune	Concesio						
Tipo di calcolo	Classi di concentrazione						
Verso	Esterno						
Coeff. btr,x	1						
Volume	- m ³						
Classe edificio	Edifici con indice di affollamento non noto						
Produz. nota	- kg/h						

Mese	θі	φί	θе	фе	n
gennaio	20,0 °C	- %	2,3 °C	93,6 %	0,5 1/h
febbraio	20,0 °C	- %	2,8 °C	86,2 %	0,5 1/h
marzo	20,0 °C	- %	7,9 °C	74,6 %	0,5 1/h
aprile	20,0 °C	- %	11,4 °C	72,1 %	0,5 1/h
maggio	20,0 °C	- %	17,1 °C	66,5 %	0,5 1/h
giugno	20,0 °C	- %	20,4 °C	58,2 %	0,5 1/h
luglio	20,0 °C	- %	21,5 ℃	70,9 %	0,5 1/h
agosto	20,0 °C	- %	21,3 °C	70,5 %	0,5 1/h
settembre	20,0 °C	- %	17,7 °C	77,7 %	0,5 1/h
ottobre	20,0 °C	- %	12,3 °C	80,3 %	0,5 1/h
novembre	20,0 °C	- %	7,0 °C	92,5 %	0,5 1/h
dicembre	20,0 °C	- %	2,8 ℃	98,3 %	0,5 1/h

Condizione	θі	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	2,30 °C	674,40 Pa
ESTIVA	20,00 °C	1 665,90 Pa	21,50 °C	1 818,10 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 485,537 Pa.

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).

La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 485,537 Pa.

Verifica di formazione di muffe superficiali

Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	12,3 °C	1147,91 Pa	373,35 Pa	1521,26 Pa	20 °C	65 %
novembre	7,0 °C	926,36 Pa	561,5 Pa	1487,86 Pa	20 °C	65 %
dicembre	2,8 °C	733,83 Pa	710,6 Pa	1444,43 Pa	20 °C	65 %
gennaio	2,3 °C	674,41 Pa	728,35 Pa	1402,76 Pa	20 °C	65 %
febbraio	2,8 °C	643,75 Pa	710,6 Pa	1354,35 Pa	20 °C	65 %
marzo	7,9 °C	794,1 Pa	529,55 Pa	1323,65 Pa	20 °C	65 %
aprile	11,4 °C	971,22 Pa	405,3 Pa	1376,52 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm		
ottobre	16,71°C	0,573		
novembre	16,36°C	0,7202		
dicembre	15,9°C	0,7615		
gennaio	15,44°C	0,7425		
febbraio	14,9°C	0,7032		
marzo	14,54°C	0,5487		
aprile	15,15°C	0,4357		

θe: temperatura esterna
Pe: pressione esterna
ΔP: variazione di pressione
Pi: pressione interna
θi: temperatura interna
φi: umidità relativa interna

θsi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,7615 (mese di Dicembre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	1 402,8	1 354,4	1 323,6	1 376,5	1 499,2	1 478,8	1 864,8	1 839,3	1 753,9	1 521,3	1 487,9	1 444,4
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
Add-A	1 402,8	1 354,4	1 323,6	1 376,5	1 499,2	1 478,8	1 864,8	1 839,3	1 753,9	1 521,3	1 487,9	1 444,4
	2 174,1	2 178,6	2 224,5	2 256,6	2 309,6	2 340,8	2 351,2	2 349,3	2 315,2	2 264,8	2 216,4	2 178,6
A-B	1 402,2	1 353,8	1 323,2	1 376,2	1 499,1	1 478,7	1 864,8	1 839,3	1 753,7	1 520,9	1 487,4	1 443,8
	2 170,3	2 174,9	2 221,9	2 254,7	2 308,9	2 340,8	2 351,6	2 349,6	2 314,7	2 263,1	2 213,5	2 174,9
B-C	1 374,5	1 326,8	1 303,1	1 360,8	1 491,3	1 475,4	1 863,0	1 837,2	1 746,8	1 506,8	1 466,1	1 416,8
	2 126,8	2 132,5	2 191,5	2 232,7	2 301,3	2 341,9	2 355,6	2 353,1	2 308,7	2 243,4	2 181,0	2 132,5
C-D	959,3	921,7	1 001,2	1 129,7	1 375,6	1 426,5	1 836,4	1 806,5	1 643,3	1 293,9	1 146,0	1 011,8
	2 112,8	2 118,8	2 181,6	2 225,6	2 298,9	2 342,2	2 356,9	2 354,2	2 306,7	2 237,0	2 170,4	2 118,8
D-E	734,4	702,3	837,7	1 004,6	1 313,0	1 400,0	1 821,9	1 789,9	1 587,2	1 178,7	972,6	792,3
	1 918,5	1 929,4	2 043,2	2 124,6	2 263,4	2 347,3	2 375,8	2 370,6	2 278,4	2 146,0	2 022,7	1 929,4
E-F	705,5	674,1	816,7	988,5	1 304,9	1 396,6	1 820,1	1 787,8	1 580,0	1 163,9	950,4	764,2
	1 906,7	1 917,9	2 034,7	2 118,4	2 261,1	2 347,6	2 377,0	2 371,7	2 276,6	2 140,4	2 013,6	1 917,9
F-G	696,9	665,7	810,5	983,7	1 302,5	1 395,6	1 819,5	1 787,1	1 577,8	1 159,4	943,7	755,8
	1 792,3	1 806,0	1 951,1	2 056,5	2 238,9	2 350,8	2 389,1	2 382,1	2 258,9	2 084,4	1 924,8	1 806,0
G-H	688,3	657,3	804,2	978,9	1 300,1	1 394,6	1 819,0	1 786,5	1 575,7	1 155,0	937,0	747,3
	733,1	759,2	1 076,9	1 357,8	1 953,8	2 394,6	2 559,7	2 529,0	2 028,2	1 439,7	1 013,6	759,2
H-I	674,4	643,8	794,1	971,2	1 296,3	1 393,0	1 818,1	1 785,5	1 572,2	1 147,9	926,4	733,8
	729,6	755,8	1 073,6	1 354,9	1 952,5	2 394,9	2 560,6	2 529,8	2 027,1	1 436,9	1 010,2	755,8
I-Add	674,4	643,8	794,1	971,2	1 296,3	1 393,0	1 818,1	1 785,5	1 572,2	1 147,9	926,4	733,8
	720,6	746,7	1 064,9	1 347,3	1 949,0	2 395,4	2 562,9	2 531,8	2 024,2	1 429,8	1 001,3	746,7

Temperature

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	18,9	18,9	19,3	19,5	19,8	20,0	20,1	20,1	19,9	19,5	19,2	18,9
A-B	18,8	18,9	19,2	19,4	19,8	20,0	20,1	20,1	19,8	19,5	19,1	18,9
B-C	18,8	18,8	19,2	19,4	19,8	20,0	20,1	20,1	19,8	19,5	19,1	18,8
C-D	18,5	18,5	19,0	19,3	19,8	20,0	20,1	20,1	19,8	19,3	18,9	18,5
D-E	18,4	18,4	18,9	19,2	19,7	20,0	20,1	20,1	19,8	19,3	18,8	18,4
E-F	16,9	16,9	17,8	18,5	19,5	20,1	20,3	20,2	19,6	18,6	17,7	16,9
F-G	16,8	16,8	17,8	18,4	19,5	20,1	20,3	20,2	19,6	18,6	17,6	16,8
G-H	15,8	15,9	17,1	18,0	19,3	20,1	20,4	20,3	19,5	18,2	16,9	15,9
H-I	2,5	3,0	8,1	11,5	17,1	20,4	21,5	21,3	17,7	12,4	7,2	3,0
I-Add	2,5	3,0	8,0	11,5	17,1	20,4	21,5	21,3	17,7	12,4	7,1	3,0
Add-Esterno	2,3	2,8	7,9	11,4	17,1	20,4	21,5	21,3	17,7	12,3	7,0	2,8

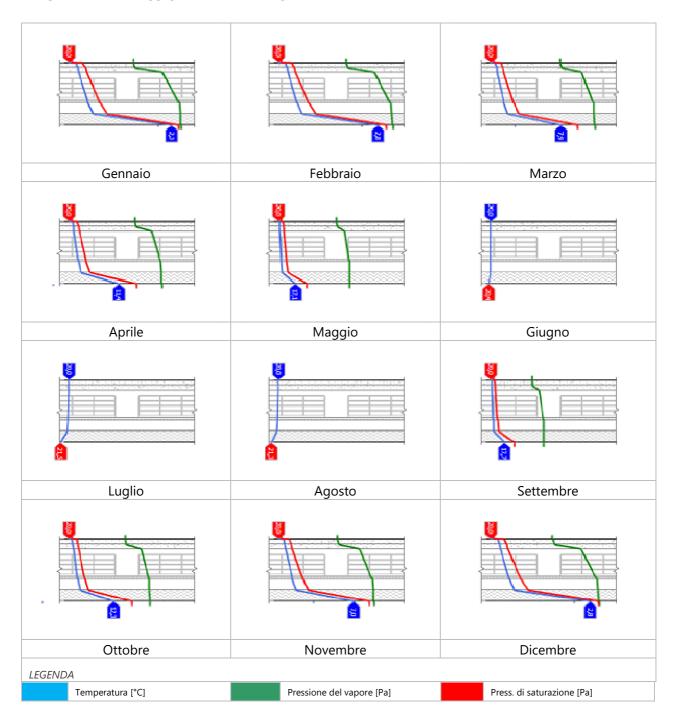
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente

Gc: 0,0000 kg/m²


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 kg/m²

Esito della verifica di condensa interstiziale: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

Verifica di massa	
Massa della struttura per metro quadrato di superficie	646 kg/m²
Valore minimo di massa superficiale	230 kg/m²

Esito della verifica di massa OK

Condizioni al contorno

Comune Concesio

Orientamento N

Colorazione Chiaro

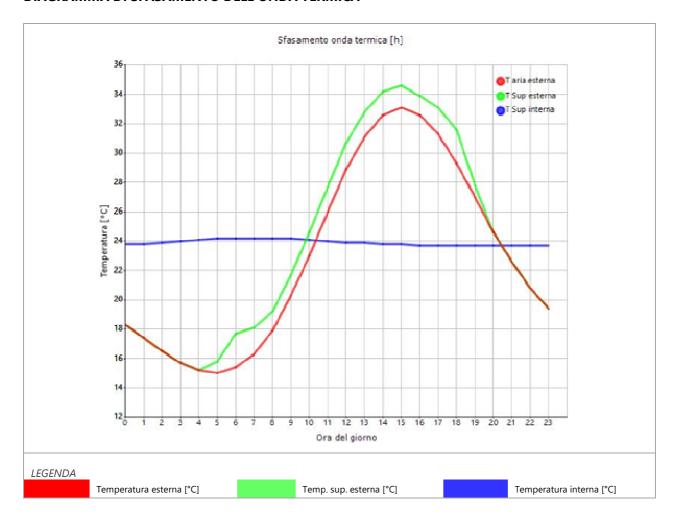
Mese massima insolazione giugno

Temperatura media nel mese di massima insolazione 20,4 °C

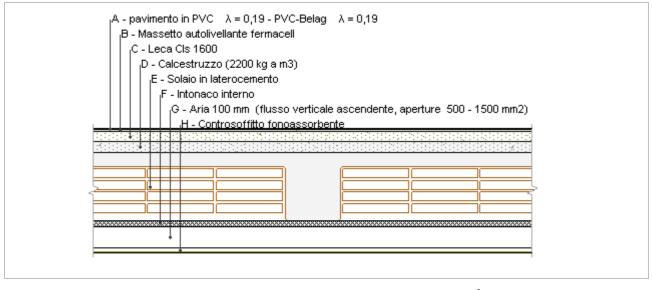
Temperatura massima estiva 33,1 °C

Escursione giorno più caldo dell'anno 18,1 °C

Irradianza mensile massima sul piano orizzontale 284,72 W/m²

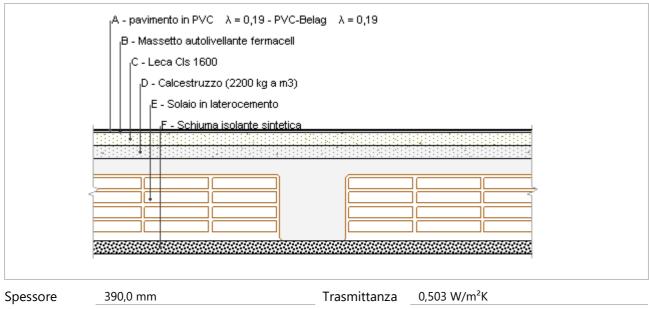

Inerzia termica

Sfasamento dell'onda termica 16h 22' Fattore di attenuazione 0,0277 Capacità termica interna C1 49,8 kJ/m²K Capacità termica esterna C2 9,7 kJ/m²K 12,9 W/m²K Ammettenza interna oraria Ammettenza interna 3,6 W/m²K 16,0 W/m²K Ammettenza esterna oraria Ammettenza esterna 0,7 W/m²K 0,007 W/m²K Trasmittanza periodica Y Valore limite Ylim 0,180 W/m²K Classificazione normativa Esito della verifica di inerzia OK


	Temperatura esterna giorno più caldo Te	Irradiazione solare giorno più caldo le	Temp. sup. esterna giorno più caldo Te,sup	Temp interna giorno più caldo Ti
Ora	°C	W/m ²	°C	°C
0:00	18,27	0,00	18,27	23,77
1:00	17,36	0,00	17,36	23,84
2:00	16,46	0,00	16,46	23,92
3:00	15,73	0,00	15,73	24,01
4:00	15,19	0,00	15,19	24,09
5:00	15,01	66,40	15,81	24,15
6:00	15,37	191,80	17,67	24,19
7:00	16,28	149,00	18,06	24,20
8:00	17,90	109,20	19,22	24,18
9:00	20,26	120,80	21,71	24,16
10:00	22,97	133,20	24,57	24,12
11:00	26,05	141,40	27,75	24,01
12:00	28,95	144,20	30,68	23,92
13:00	31,12	141,40	32,81	23,87
14:00	32,57	133,20	34,16	23,82
15:00	33,11	120,80	34,56	23,78
16:00	32,57	109,20	33,88	23,75
17:00	31,30	149,00	33,09	23,72
18:00	29,31	191,80	31,61	23,70

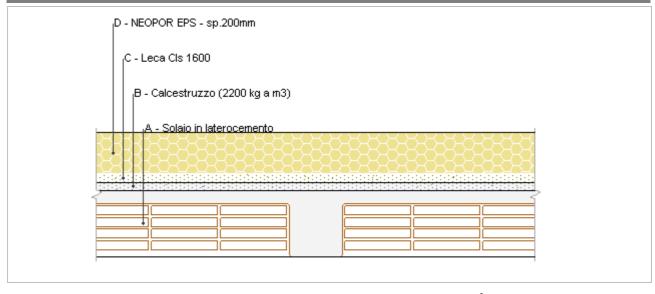
19:00	26,95	66,40	27,75	23,68
20:00	24,60	0,00	24,60	23,66
21:00	22,61	0,00	22,61	23,68
22:00	20,80	0,00	20,80	23,73
23:00	19,35	0,00	19,35	23,74

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA


S07P - INT - 47 - Pavimento P1 (verso mensa)

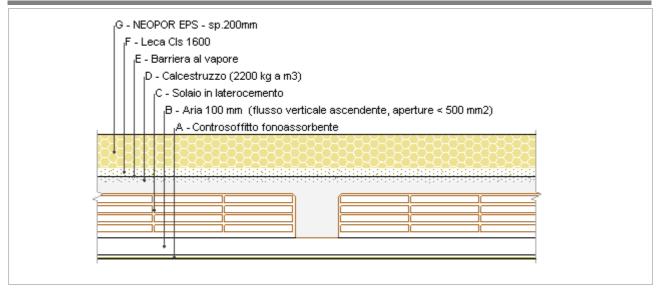
Spessore	470,0 mm	Trasmittanza	0,693 W/m²K
Resistenza	1,443 m ² K/W	Massa superf.	638 kg/m²
Tipologia	Pavimento		
Descrizione			

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
		S	λ	R	ρ	C	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
Α	pavimento in PVC $\lambda = 0.19$ - PVC-Belag $\lambda = 0.19$	3,0	0,190	0,016	1 500	1,08	0,0
В	Massetto autolivellante fermacell	7,0	1,100	0,006	1 750	0,24	1,0
С	Leca Cls 1600	40,0	0,540	0,074	1 600	1,00	8,0
D	Calcestruzzo (2200 kg a m3)	40,0	1,650	0,024	2 200	1,00	70,0
Е	Solaio in laterocemento	260,0	0,743	0,350	1 800	1,00	5,0
F	Intonaco interno	20,0	0,700	0,029	1 400	1,00	11,1
G	Aria 100 mm (flusso verticale ascendente, aperture 500 - 1500 mm2)	80,0	1,260	0,063	1	1,00	1,0
Н	Controsoffitto fonoassorbente	20,0	0,037	0,541	80	2,10	1,0
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
	TOTALE	470,0		1,443			


S08P - ZNR - 47 - Pavimento (porzione monopiano)

Spessore390,0 mmTrasmittanza0,503 W/m²KResistenza1,987 m²K/WMassa superf.638 kg/m²TipologiaPavimentoDescrizione

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
Α	pavimento in PVC $\lambda = 0.19$ - PVC-Belag $\lambda = 0.19$	3,0	0,190	0,016	1 500	1,08	0,0
В	Massetto autolivellante fermacell	7,0	1,100	0,006	1 750	0,24	1,0
C	Leca Cls 1600	40,0	0,540	0,074	1 600	1,00	8,0
D	Calcestruzzo (2200 kg a m3)	40,0	1,650	0,024	2 200	1,00	70,0
Е	Solaio in laterocemento	260,0	0,743	0,350	1 800	1,00	5,0
F	Schiuma isolante sintetica	40,0	0,034	1,176	25	1,60	42,6
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
	TOTALE	390,0		1,987			


S09Pa - ZNR - 1292 - Soffitto palestra (corridoio) h=2.95

Spessore	600,0 mm	Trasmittanza	0,147 W/m ² K	
Resistenza	6,790 m ² K/W	Massa superf.	734 kg/m²	
Tipologia	Soffitto			
Descrizione				

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
Α	Solaio in laterocemento	320,0	0,743	0,431	1 800	1,00	5,0
В	Calcestruzzo (2200 kg a m3)	40,0	1,650	0,024	2 200	1,00	70,0
С	Leca Cls 1600	40,0	0,540	0,074	1 600	1,00	8,0
D	NEOPOR EPS - sp.200mm	200,0	0,033	6,061	28	0,35	70,0
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
	TOTALE	600,0		6,790			

S09Pb - ZNR - 722 - Soffitto palestra (aula) h=2.95

Spessore	722,0 mm	Trasmittanza	0,133 W/m ² K	
Resistenza	7,494 m ² K/W	Massa superf.	736 kg/m²	
Tipologia	Soffitto			
Descrizione				

Stratigrafia

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
	Descrizione	S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
Α	Controsoffitto fonoassorbente	20,0	0,037	0,541	80	2,10	1,0
В	Aria 100 mm (flusso verticale ascendente, aperture < 500 mm2)	100,0	0,630	0,159	1	1,00	1,0
C	Solaio in laterocemento	320,0	0,743	0,431	1 800	1,00	5,0
D	Calcestruzzo (2200 kg a m3)	40,0	1,650	0,024	2 200	1,00	70,0
E	Barriera al vapore	2,0	0,400	0,005	360	1,50	20 000,0
F	Leca Cls 1600	40,0	0,540	0,074	1 600	1,00	8,0
G	NEOPOR EPS - sp.200mm	200,0	0,033	6,061	28	0,35	70,0
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
	TOTALE	722,0		7.494			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al contorno e dati climatici					
Comune	Concesio				
Tipo di calcolo	Classi di concentrazione				
Verso	Zona non riscaldata				
Coeff. btr,x	0,0				
Volume	- m³				
Classe edificio	Edifici con indice di affollamento non noto				
Produz. nota	- kg/h				

Mese	θі	φί	θе	φе	n
gennaio	20,0 °C	- %	20,0 °C	93,6 %	0,5 1/h
febbraio	20,0 °C	- %	20,0 °C	86,2 %	0,5 1/h
marzo	20,0 °C	- %	20,0 °C	74,6 %	0,5 1/h
aprile	20,0 °C	- %	20,0 °C	72,1 %	0,5 1/h
maggio	20,0 °C	- %	20,0 °C	66,5 %	0,5 1/h
giugno	20,0 °C	- %	20,0 °C	58,2 %	0,5 1/h
luglio	20,0 °C	- %	20,0 °C	70,9 %	0,5 1/h
agosto	20,0 °C	- %	20,0 °C	70,5 %	0,5 1/h
settembre	20,0 °C	- %	20,0 °C	77,7 %	0,5 1/h
ottobre	20,0 °C	- %	20,0 °C	80,3 %	0,5 1/h
novembre	20,0 °C	- %	20,0 °C	92,5 %	0,5 1/h
dicembre	20,0 °C	- %	20,0 °C	98,3 %	0,5 1/h

Condizione	θί	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	20,00 °C	2 187,20 Pa
ESTIVA	20.00 °C	1 519.00 Pa	20.00 °C	2 187.20 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 49,719 Pa.

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).

X La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 49,719 Pa.

Verifica di formazione di muffe superficiali

Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	20,0 °C	1876,24 Pa	100 Pa	1976,24 Pa	20 °C	65 %
novembre	20,0 °C	2161,97 Pa	100 Pa	2261,97 Pa	20 °C	65 %
dicembre	20,0 °C	2296,67 Pa	100 Pa	2396,67 Pa	20 °C	65 %
gennaio	20,0 °C	2187,23 Pa	100 Pa	2287,23 Pa	20 °C	65 %
febbraio	20,0 °C	2014,76 Pa	100 Pa	2114,76 Pa	20 °C	65 %
marzo	20,0 °C	1742,63 Pa	100 Pa	1842,63 Pa	20 °C	65 %
aprile	20,0 °C	1684,61 Pa	100 Pa	1784,61 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm		
ottobre	20,9°C	0		
novembre	23,12°C	0		
dicembre	24,08°C	0		
gennaio	23,3°C	0		
febbraio	22,01°C	0		
marzo	19,77°C	0		
aprile	19,25°C	0		

θe: temperatura esterna
Pe: pressione esterna
ΔP: variazione di pressione
Pi: pressione interna
θi: temperatura interna

φi: umidità relativa interna

θsi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,0000 (mese di Ottobre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	2 287,2	2 114,8	1 842,6	1 784,6	1 654,3	1 459,0	1 757,8	1 748,1	1 915,1	1 976,2	2 262,0	2 396,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
Add-A	2 287,2	2 114,7	1 842,6	1 784,6	1 654,3	1 458,9	1 757,7	1 748,1	1 915,1	1 976,2	2 261,9	2 396,6
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
A-B	2 287,0	2 114,6	1 842,4	1 784,4	1 654,1	1 458,8	1 757,6	1 747,9	1 914,9	1 976,0	2 261,8	2 396,5
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
В-С	2 281,9	2 109,4	1 837,3	1 779,3	1 649,0	1 453,6	1 752,5	1 742,8	1 909,8	1 970,9	2 256,7	2 391,4
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
C-D	2 274,2	2 101,8	1 829,6	1 771,6	1 641,3	1 445,9	1 744,8	1 735,1	1 902,1	1 963,2	2 249,0	2 383,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
D-E	2 210,2	2 037,7	1 765,6	1 707,5	1 577,3	1 381,9	1 680,7	1 671,0	1 838,0	1 899,2	2 184,9	2 319,6
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
E-F	2 209,7	2 037,2	1 765,0	1 707,0	1 576,8	1 381,4	1 680,2	1 670,5	1 837,5	1 898,7	2 184,4	2 319,1
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
F-G	2 187,2	2 014,8	1 742,6	1 684,6	1 554,3	1 359,0	1 657,8	1 648,1	1 815,1	1 876,2	2 162,0	2 296,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
G-Add	2 187,2	2 014,8	1 742,6	1 684,6	1 554,3	1 359,0	1 657,8	1 648,1	1 815,1	1 876,2	2 162,0	2 296,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0

Temperature

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
A-B	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
B-C	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
C-D	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
D-E	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
E-F	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
F-G	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
G-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-Esterno	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0

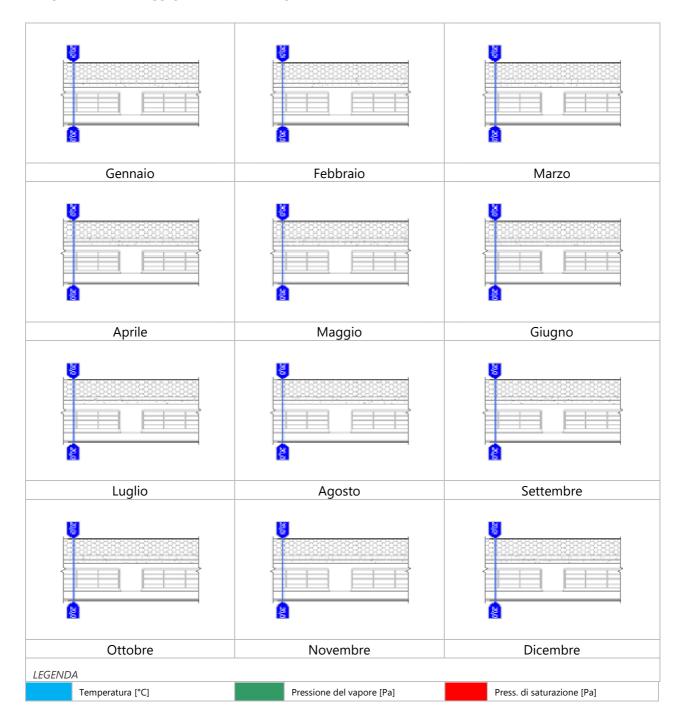
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B								-				
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. D/E												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. E/F												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]												

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente

Gc: 0,0000 kg/m²


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 kg/m²

Esito della verifica di condensa interstiziale: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

_					
Massa	a della	struttura	per metro	quadrato	di superficie

736 kg/m² Valore minimo di massa superficiale 230 kg/m²

Esito della verifica di massa OK

Condizioni al contorno

Verifica di massa

Comune Concesio Orientamento Ν

Colorazione Chiaro

Mese massima insolazione giugno

Temperatura media nel mese di massima insolazione 20,4 °C

33,1 °C Temperatura massima estiva Escursione giorno più caldo dell'anno 18,1 °C

Irradianza mensile massima sul piano orizzontale 284,72 W/m²

Inerzia termica

Sfasamento dell'onda termica 17h 34'

Fattore di attenuazione 0,0064

Capacità termica interna C1 16,0 kJ/m²K

2,2 kJ/m²K Capacità termica esterna C2

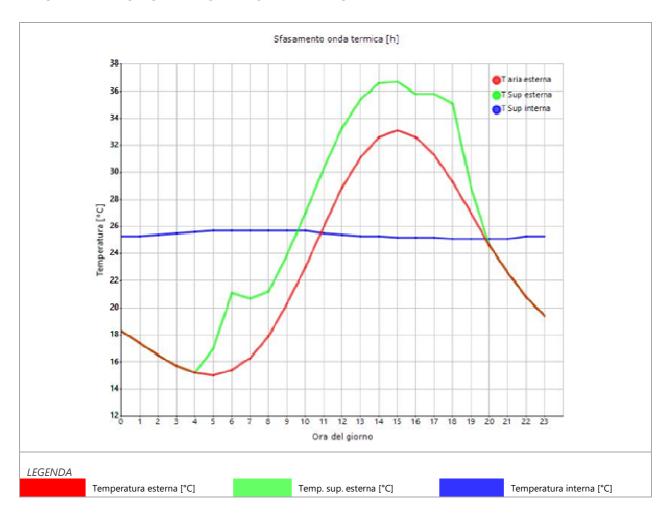
12,6 W/m²K Ammettenza interna oraria

Ammettenza interna 1,2 W/m²K

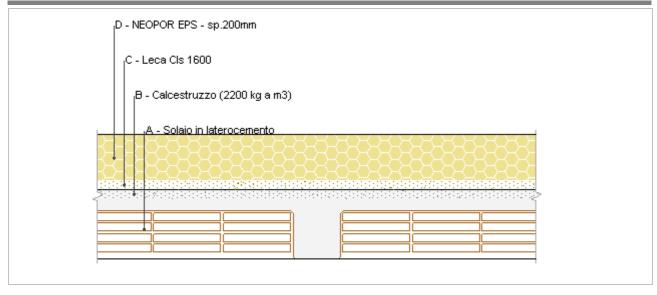
13,2 W/m²K Ammettenza esterna oraria

Ammettenza esterna 0,2 W/m²K Trasmittanza periodica Y 0,001 W/m²K

Valore limite Ylim 0,180 W/m²K

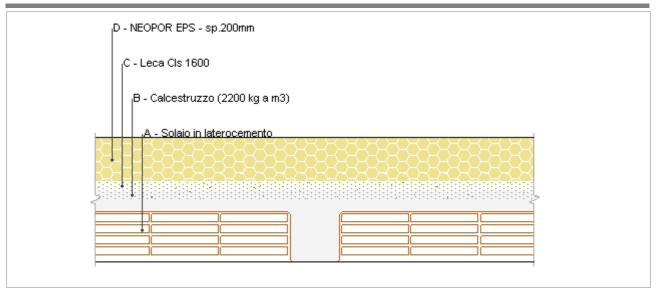

Classificazione normativa

Esito della verifica di inerzia OK


	Temperatura esterna	Irradiazione solare	Temp. sup. esterna	Temp interna
	giorno più caldo Te	giorno più caldo le	giorno più caldo Te,sup	giorno più caldo Ti
Ora	°C	W/m ²	°C	°C
0:00	18,27	0,00	18,27	25,35
1:00	17,36	0,00	17,36	25,35
2:00	16,46	0,00	16,46	25,35
3:00	15,73	0,00	15,73	25,37
4:00	15,19	0,00	15,19	25,39
5:00	15,01	66,40	17,00	25,41
6:00	15,37	191,80	21,12	25,43
7:00	16,28	149,00	20,75	25,44
8:00	17,90	109,20	21,18	25,45
9:00	20,26	120,80	23,88	25,45
10:00	22,97	133,20	26,97	25,45
11:00	26,05	141,40	30,29	25,45
12:00	28,95	144,20	33,27	25,44
13:00	31,12	141,40	35,36	25,40
14:00	32,57	133,20	36,56	25,37
15:00	33,11	120,80	36,73	25,36
16:00	32,57	109,20	35,84	25,35
17:00	31,30	149,00	35,77	25,34
18:00	29,31	191,80	35,06	25,33

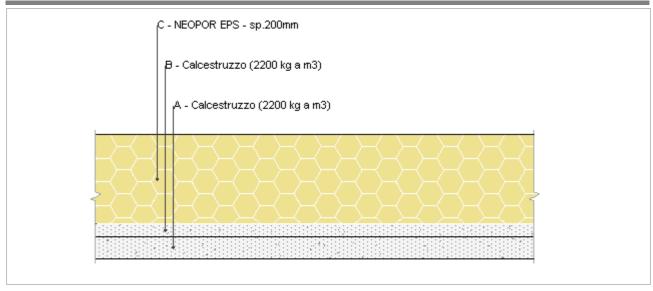
19:00	26,95	66,40	28,95	25,33
20:00	24,60	0,00	24,60	25,32
21:00	22,61	0,00	22,61	25,32
22:00	20,80	0,00	20,80	25,31
23:00	19,35	0,00	19,35	25,33

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA


S10P - ZNR - 1230 - Soffitto scuola (corridoio) h=2.40

Spessore	540,0 mm	Trasmittanza	0,149 W/m²K	
Resistenza	6,709 m ² K/W	Massa superf.	626 kg/m²	
Tipologia	Soffitto			
Descrizione				

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
Α	Solaio in laterocemento	260,0	0,743	0,350	1 800	1,00	5,0
В	Calcestruzzo (2200 kg a m3)	40,0	1,650	0,024	2 200	1,00	70,0
С	Leca Cls 1600	40,0	0,540	0,074	1 600	1,00	8,0
D	NEOPOR EPS - sp.200mm	200,0	0,033	6,061	28	0,35	70,0
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
	TOTALE	540,0		6,709			


S10P - ZNR - 680 - Soffitto scuola (aule) h=2.95

Spessore	560,0 mm	Trasmittanza	0,148 W/m ² K	
Resistenza	6,736 m ² K/W	Massa superf.	662 kg/m²	
Tipologia	Soffitto			
Descrizione				

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μυ
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
Α	Solaio in laterocemento	280,0	0,743	0,377	1 800	1,00	5,0
В	Calcestruzzo (2200 kg a m3)	40,0	1,650	0,024	2 200	1,00	70,0
С	Leca Cls 1600	40,0	0,540	0,074	1 600	1,00	8,0
D	NEOPOR EPS - sp.200mm	200,0	0,033	6,061	28	0,35	70,0
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
	TOTALE	560,0		6,736			

S11P - ZNR - 280 - Soffitto palestra

Spessore	280,0 mm	Trasmittanza	0,159 W/m ² K	
Resistenza	6,309 m ² K/W	Massa superf.	182 kg/m²	
Tipologia	Soffitto			
Descrizione				

Stratigrafia

	Descrizione	Spessore s	Conduttività λ	Resistenza R	Densità ρ	Capacità C	Fattore μυ
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
Α	Calcestruzzo (2200 kg a m3)	50,0	1,650	0,030	2 200	1,00	70,0
В	Calcestruzzo (2200 kg a m3)	30,0	1,650	0,018	2 200	1,00	70,0
С	NEOPOR EPS - sp.200mm	200,0	0,033	6,061	28	0,35	70,0
	Adduttanza interna (flusso verticale ascendente)	-	-	0,100	-	-	-
	TOTALE	280,0		6,309			

CARATTERISTICHE TERMOIGROMETRICHE

Condizioni al co	Condizioni al contorno e dati climatici						
Comune	Concesio						
Tipo di calcolo	Classi di concentrazione						
Verso	Zona non riscaldata						
Coeff. btr,x	0,0						
Volume	- m³						
Classe edificio	Edifici con indice di affollamento non noto						
Produz. nota	- kg/h						

Mese	θі	φί	θе	φе	n
gennaio	20,0 °C	- %	20,0 °C	93,6 %	0,5 1/h
febbraio	20,0 °C	- %	20,0 °C	86,2 %	0,5 1/h
marzo	20,0 °C	- %	20,0 °C	74,6 %	0,5 1/h
aprile	20,0 °C	- %	20,0 °C	72,1 %	0,5 1/h
maggio	20,0 °C	- %	20,0 °C	66,5 %	0,5 1/h
giugno	20,0 °C	- %	20,0 °C	58,2 %	0,5 1/h
luglio	20,0 °C	- %	20,0 °C	70,9 %	0,5 1/h
agosto	20,0 °C	- %	20,0 °C	70,5 %	0,5 1/h
settembre	20,0 °C	- %	20,0 °C	77,7 %	0,5 1/h
ottobre	20,0 °C	- %	20,0 °C	80,3 %	0,5 1/h
novembre	20,0 °C	- %	20,0 °C	92,5 %	0,5 1/h
dicembre	20,0 °C	- %	20,0 °C	98,3 %	0,5 1/h

Condizione	θί	pi	θе	pe
INVERNALE	20,00 °C	1 519,00 Pa	20,00 °C	2 187,20 Pa
ESTIVA	20.00 °C	1 519.00 Pa	20.00 °C	2 187.20 Pa

θi: temperatura interna φi: umidità relativa interna θe: temperatura esterna φe: umidità relativa esterna n: numero di ricambi d'aria pi: pressione interna pe: pressione esterna

La struttura non è soggetta a fenomeni di condensa interstiziale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 49,719 Pa.

La struttura è soggetta a fenomeni di condensa. La quantità stagionale di vapore condensato è pari a 0,000 kg/m² (rievaporabile durante il periodo estivo).

X La struttura non è soggetta a fenomeni di condensa superficiale. La differenza minima di pressione tra quella di saturazione e quella reale ΔP è pari a 49,719 Pa.

Verifica di formazione di muffe superficiali

Condizioni al contorno e dati climatici

Mese	θе	Pe	ΔΡ	Pi	θі	φi
ottobre	20,0 °C	1876,24 Pa	100 Pa	1976,24 Pa	20 °C	65 %
novembre	20,0 °C	2161,97 Pa	100 Pa	2261,97 Pa	20 °C	65 %
dicembre	20,0 °C	2296,67 Pa	100 Pa	2396,67 Pa	20 °C	65 %
gennaio	20,0 °C	2187,23 Pa	100 Pa	2287,23 Pa	20 °C	65 %
febbraio	20,0 °C	2014,76 Pa	100 Pa	2114,76 Pa	20 °C	65 %
marzo	20,0 °C	1742,63 Pa	100 Pa	1842,63 Pa	20 °C	65 %
aprile	20,0 °C	1684,61 Pa	100 Pa	1784,61 Pa	20 °C	65 %

Calcolo del fattore di rischio

Mese	θsi-critica	fRsi-amm
ottobre	20,9°C	0
novembre	23,12°C	0
dicembre	24,08°C	0
gennaio	23,3°C	0
febbraio	22,01°C	0
marzo	19,77°C	0
aprile	19,25°C	0

θe: temperatura esterna Pe: pressione esterna ΔP: variazione di pressione Pi: pressione interna

θi: temperatura interna φi: umidità relativa interna

θsi critica: temperatura superficiale critica

fRsi amm: fattore di resistenza superficiale ammissibile

Riepilogo dei risultati

Metodo di calcolo umidità relativa ambiente interno: classi di concentrazione Fattore di resistenza superficiale fRsi: 0,0000 (mese di Ottobre)

Pressione di vapore e pressione di saturazione

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	2 287,2	2 114,8	1 842,6	1 784,6	1 654,3	1 459,0	1 757,8	1 748,1	1 915,1	1 976,2	2 262,0	2 396,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
Add-A	2 261,8	2 089,3	1 817,2	1 759,2	1 628,9	1 433,5	1 732,4	1 722,7	1 889,7	1 950,8	2 236,5	2 371,2
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
A-B	2 246,6	2 074,1	1 802,0	1 743,9	1 613,7	1 418,3	1 717,1	1 707,4	1 874,4	1 935,6	2 221,3	2 356,0
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
B-C	2 187,2	2 014,8	1 742,6	1 684,6	1 554,3	1 359,0	1 657,8	1 648,1	1 815,1	1 876,2	2 162,0	2 296,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0
C-Add	2 187,2	2 014,8	1 742,6	1 684,6	1 554,3	1 359,0	1 657,8	1 648,1	1 815,1	1 876,2	2 162,0	2 296,7
	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0	2 337,0

Temperature

	· · · · · · · · · · · · · · · · · · ·											
	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interno-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-A	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
A-B	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
B-C	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
C-Add	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Add-Esterno	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0

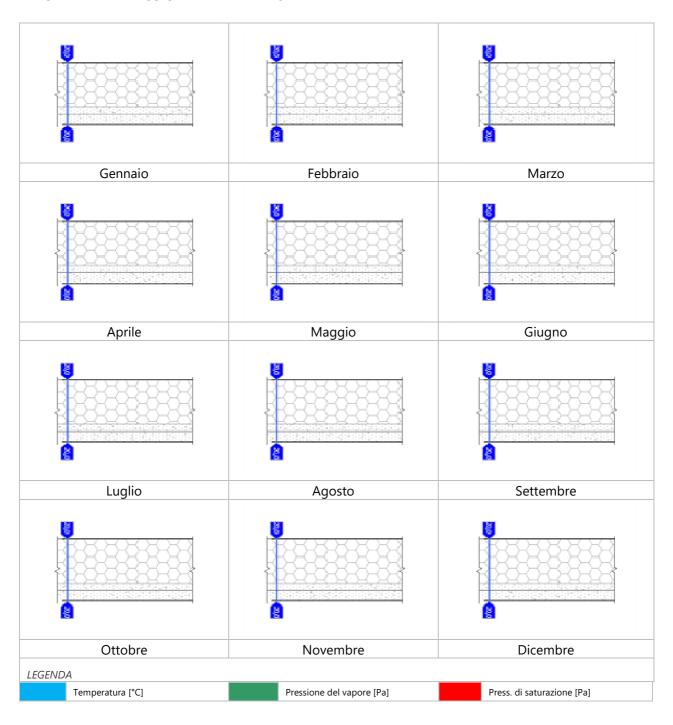
Verifica formazione di condensa interstiziale

	Gen	Feb	Mar	Apr	Mag	Giu	Lug	Ago	Set	Ott	Nov	Dic
Interf. A/B												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. B/C												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Interf. C/D												
Gc [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Ma [Kg/m²]	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000

Verifica di condensa interstiziale:

Quantità massima di vapore accumulato mensilmente

Gc: 0,0000 kg/m²


Quantità ammissibile di vapore accumulato mensilmente in un'interfaccia

Gc,max: 0,5000 kg/m²

Quantità di vapore residuo Ma: 0,0000 kg/m²

Esito della verifica di condensa interstiziale: Condensa assente

DIAGRAMMI DI PRESSIONE E TEMPERATURA

CARATTERISTICHE DI INERZIA TERMICA - UNI 13786

Verifica di	massa
-------------	-------

Massa della struttura per metro quadrato di superficie 182 kg/m² Valore minimo di massa superficiale 230 kg/m²

Esito della verifica di massa OK

Condizioni al contorno

Comune Concesio

Orientamento N

Colorazione Chiaro

Mese massima insolazione giugno

Temperatura media nel mese di massima insolazione

Temperatura massima estiva

Escursione giorno più caldo dell'anno 18,1 °C

Irradianza mensile massima sul piano orizzontale 284,72 W/m²

Inerzia termica

Sfasamento dell'onda termica 4h 43'

Fattore di attenuazione 0,5583

Capacità termica interna C1 97,8 kJ/m²K

Capacità termica esterna C2 2,4 kJ/m²K

Ammettenza interna oraria 14,3 W/m²K

Ammettenza interna 7,1 W/m²K

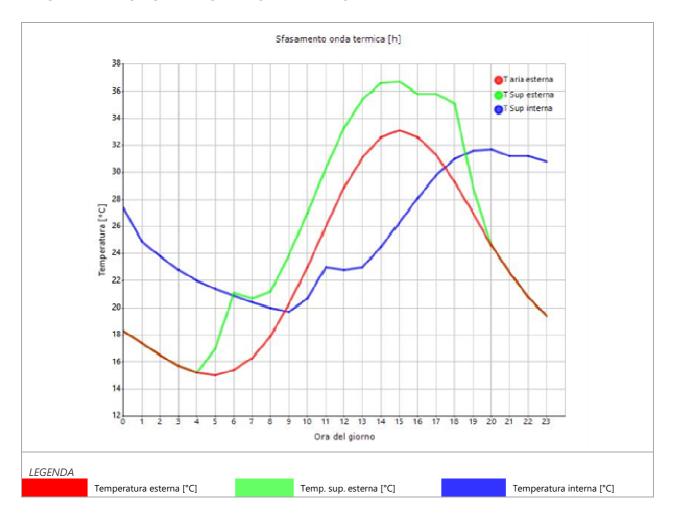
Ammettenza esterna oraria 13,2 W/m²K

Ammettenza esterna 0,2 W/m²K

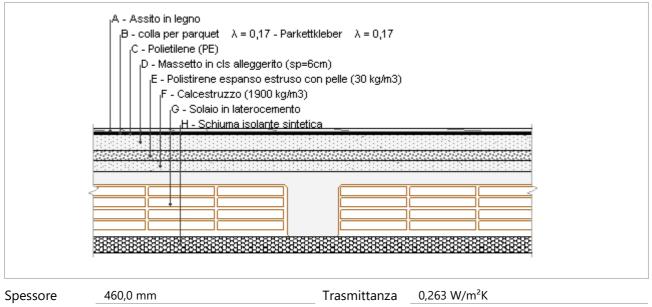
Trasmittanza periodica Y 0,081 W/m²K

Valore limite Ylim 0,180 W/m²K

Classificazione normativa


Esito della verifica di inerzia OK

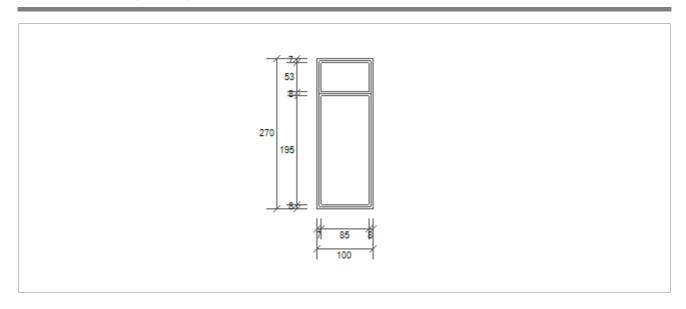
	Temperatura esterna	Irradiazione solare	Temp. sup. esterna	Temp interna
	giorno più caldo Te	giorno più caldo le	giorno più caldo Te,sup	giorno più caldo Ti
Ora	°C	W/m ²	°C	°C
0:00	18,27	0,00	18,27	27,37
1:00	17,36	0,00	17,36	24,95
2:00	16,46	0,00	16,46	23,83
3:00	15,73	0,00	15,73	22,82
4:00	15,19	0,00	15,19	22,01
5:00	15,01	66,40	17,00	21,41
6:00	15,37	191,80	21,12	20,90
7:00	16,28	149,00	20,75	20,40
8:00	17,90	109,20	21,18	19,99
9:00	20,26	120,80	23,88	19,69
10:00	22,97	133,20	26,97	20,70
11:00	26,05	141,40	30,29	23,00
12:00	28,95	144,20	33,27	22,79
13:00	31,12	141,40	35,36	23,04
14:00	32,57	133,20	36,56	24,54
15:00	33,11	120,80	36,73	26,27
16:00	32,57	109,20	35,84	28,12
17:00	31,30	149,00	35,77	29,79
18:00	29,31	191,80	35,06	30,95


20,4 °C 33,1 °C

19:00	26.95	66.40	28.95	31,62
20:00	24,60	0,00	24.60	31,72
	· · · · · · · · · · · · · · · · · · ·	,	,	- ,
21:00	22,61	0,00	22,61	31,22
22:00	20,80	0,00	20,80	31,18
23:00	19,35	0,00	19,35	30,79

DIAGRAMMA DI SFASAMENTO DELL'ONDA TERMICA

SOL01 - ZNR - 43 - Pavimento palestra (esistente)


Resistenza 3,806 m²K/W Massa superf. 578 kg/m²

Tipologia Pavimento

Descrizione

	Descrizione	Spessore	Conduttività	Resistenza	Densità	Capacità	Fattore
		S	λ	R	ρ	С	μu
		mm	W/(mK)	m²K/W	Kg/m³	kJ/(kgK)	-
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
Α	Assito in legno	14,0	0,150	0,093	550	1,60	44,4
В	colla per parquet $\lambda = 0.17$ - Parkettkleber $\lambda = 0.17$	5,0	0,170	0,029	1 000	1,40	0,0
C	Polietilene (PE)	1,0	0,350	0,003	950	2,30	54 054,1
D	Massetto in cls alleggerito (sp=6cm)	60,0	0,580	0,103	900	1,00	3,3
E	Polistirene espanso estruso con pelle (30 kg/m3)	40,0	0,036	1,111	30	1,34	999 999,0
F	Calcestruzzo (1900 kg/m3)	40,0	1,060	0,038	1 900	0,88	3,3
G	Solaio in laterocemento	240,0	0,743	0,323	1 800	1,00	5,0
Н	Schiuma isolante sintetica	60,0	0,034	1,765	25	1,60	42,6
	Adduttanza interna (flusso verticale discendente)	-	-	0,170	-	-	-
	TOTALE	460,0		3,806			

Fe01a - 100 x 270 (U - 1,10) - n°4

Larghezza	L	100 cm
Altezza	Н	210 cm
Area del vetro	Ag	2,104 m ²
Area del telaio	Af	0,596 m ²
Area totale del serramento	Aw	2,700 m ²
Perimetro del vetro	р	8,350 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo
Trasmittanza	Ug	1,100 W/(m ² K)
Coeff di trasmissione solare	g gl	0,670
Emissività	3	0,100
Telaio		
Materiale		PVC profile vuote

Materiale Spessore sf Tipologia tipo Distanziatore dist Trasmittanza Uf

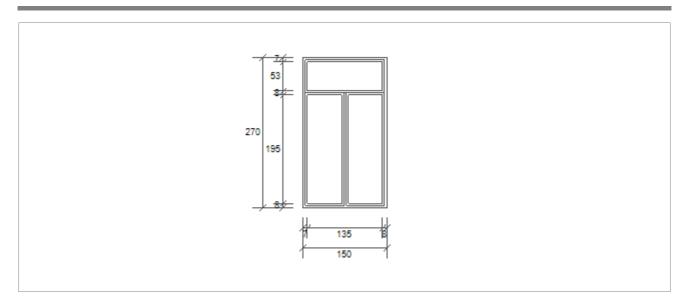
ψfg

Ponte termico tra vetro e telaio

FVE profile vacto
0 mm
Con sei camere
Metallo
1,100 W/(m ² K)
0,060 W/(mK)

Tipo schermatura	Tenda				
Colore	-				
Posizione	Veneziane	bianche - Int	erna		
Trasparenza	-				
Fattore di schermatu	ra diffuso	g,gl,sh,d	_		
Fattore di schermatu	ra diretto	g,gl,sh,b	-		
Fattore di schermatu	ra tende	g,gl,sh/g,gl	0,25		

	hi	usu	ra	06	~ 11	ra	nto
u	ш	usu	Га	()5		14	пе


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva d	dovuta alla chiusura ΔR	0,000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	7,4	0,200

Fe01b - 150 x 270 (U - 1,10) - n°4

Larghezza	L	150 cm
Altezza	Н	210 cm
Area del vetro	Ag	3,107 m ²
Area del telaio	Af	0,943 m ²
Area totale del serramento	Aw	4,050 m ²
Perimetro del vetro	р	14,010 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo	
Trasmittanza	Ug	1,100 W/(m ² K)	
Coeff di trasmissione solare	g gl	0,670	
Emissività	3	0,100	
Telaio			
Materiale		PVC profilo vuoto	
C	,		

Materiale
Spessore sf
Tipologia tipo
Distanziatore dist
Trasmittanza Uf
Ponte termico tra vetro e telaio ψfg

0 mm

Con sei camere

Metallo

1,100 W/(m²K)

0,060 W/(mK)

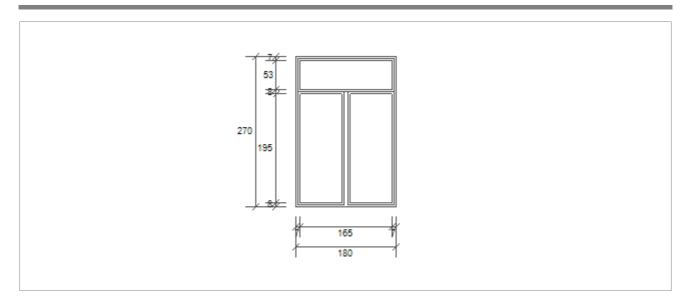
Schermature mobili

Fattore di schermatura tende

Tipo schermatura	Tenda				
Colore	-				
Posizione	Veneziane	bianche - Int	erna		
Trasparenza	-				
Fattore di schermatur Fattore di schermatur		g,gl,sh,d g,gl,sh,b	-		

g,gl,sh/g,gl 0,25

Ch	incura	oscurante
CII	แนรนเล	OSCULATILE


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva c	lovuta alla chiusura ΔR	0.000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	8,4	0,200

Fe01c - 180 x 270 (U - 1,10) - n°1

Larghezza	L	180 cm
Altezza	Н	210 cm
Area del vetro	Ag	3,791 m ²
Area del telaio	Af	1,069 m ²
Area totale del serramento	Aw	4,860 m ²
Perimetro del vetro	р	15,150 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo
Trasmittanza	Ug	1,100 W/(m²K)
Coeff di trasmissione solare	g gl	0,670
Emissività	3	0,100
Telaio		
Materiale		PVC profilo vuoto

Materiale Spessore sf Tipologia tipo Distanziatore dist Trasmittanza Uf

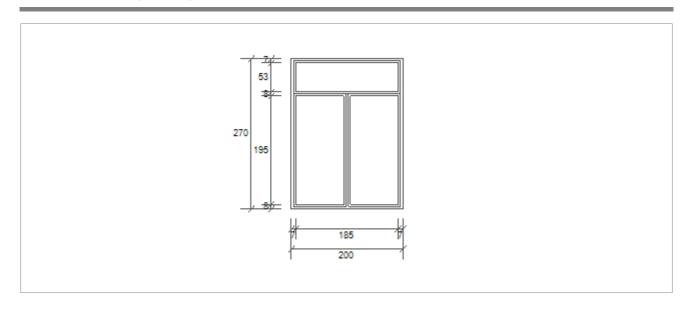
ψfg

Ponte termico tra vetro e telaio

0 mm
Con sei camere
Metallo
1,100 W/(m ² K)
0.060 W/(mK)

Tipo schermatura	Tenda				
Colore	-				
Posizione	Veneziane	bianche - Int	erna		
Trasparenza	_				
Fattore di schermatu	g,gl,sh,d	-			
Fattore di schermatura diretto		g,gl,sh,b	-		
Fattore di schermatura tende		g,gl,sh/g,gl	0,25		

	hi	usu	ra	06	~ 11	ra	nto
u	ш	usu	Га	()5		14	пе


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva d	lovuta alla chiusura ΛR	0.000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	9,0	0,200

Fe01d - 200 x 270 (U - 1,10) - n°1

Larghezza	L	200 cm
Altezza	Н	210 cm
Area del vetro	Ag	4,345 m ²
Area del telaio	Af	1,055 m ²
Area totale del serramento	Aw	5,400 m ²
Perimetro del vetro	р	16,010 m
Trasmittanza	Uw	1,100 W/(m ² K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo	
Trasmittanza	Ug	1,100 W/(m ² K)	
Coeff di trasmissione solare	g gl	0,670	
Emissività	3	0,100	
Telaio			
Materiale		Metallo	
Spessore	sf	52 mm	

Con taglio termico

Spessore sf
Tipologia tipo
Distanziatore dist
Trasmittanza Uf

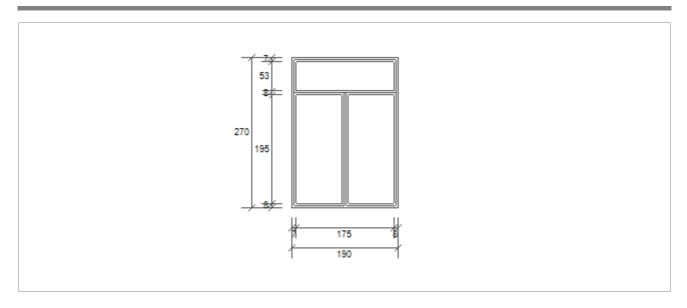
 $\begin{array}{cccc} Distanziatore & dist & \underline{Metallo} \\ Trasmittanza & Uf & \underline{1,100~W/(m^2K)} \\ Ponte termico tra vetro e telaio & \psi fg & 0,060~W/(mK) \\ \end{array}$

Schermature mobili

Tipo schermatura	Tenda
Colore	
Posizione	Veneziane bianche - Interna
Trasparenza	-

Fattore di schermatura diffuso g,gl,sh,d Fattore di schermatura diretto g,gl,sh,b Fattore di schermatura tende g,gl,sh/g,gl 0,25

Ch	iusura	OSCII	ranto
CII	uusura	USCU	Iaiie


Tipo chiusura	_		
Permeabilità	-		
Resistenza termica aggiuntiva d	lovuta alla chiusura ΔR	0,000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	9,4	0,200

Fe01e - 190 x 270 (U - 1,10) - n°2

Larghezza	L	190 cm
Altezza	Н	210 cm
Area del vetro	Ag	4,097 m ²
Area del telaio	Af	1,033 m ²
Area totale del serramento	Aw	5,130 m ²
Perimetro del vetro	р	15,610 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo	
Trasmittanza	Ug	1,100 W/(m ² K)	
Coeff di trasmissione solare	g gl	0,670	
Emissività	ε	0,100	
Telaio			
Materiale		PVC profilo vuoto	
Chassara	cf	0 mm	

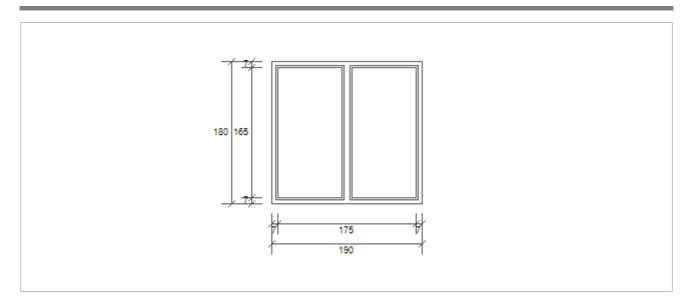
Materiale
Spessore sf
Tipologia tipo
Distanziatore dist
Trasmittanza Uf
Ponte termico tra vetro e telaio ψfg

Fattore di schermatura tende g,gl,sh/g,gl 0,25

PVC profilo vuoto
0 mm
Con sei camere
Metallo
1,100 W/(m ² K)
0,060 W/(mK)
1,100 W/(m²K)

Tipo schermatura	Tenda				
Colore	-				
Posizione	Veneziane I	oianche - Int	erna		
Trasparenza	-				
Fattore di schermatur Fattore di schermatur		g,gl,sh,d g,gl,sh,b	-		

	hi	usu	ra	06	~ 11	ra	nto
u	ш	usu	Га	()5		14	пе


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva d	lovuta alla chiusura ΛR	0.000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4) Non dichiarato

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	9,2	0,200

Fe02b - 190 x 180 (U - 1,10) - n°14

Larghezza	L	190 cm
Altezza	Н	180 cm
Area del vetro	Ag	2,690 m ²
Area del telaio	Af	0,730 m ²
Area totale del serramento	Aw	3,420 m ²
Perimetro del vetro	р	9,860 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo
Trasmittanza	Ug	1,100 W/(m ² K)
Coeff di trasmissione solare	ggl	0,670
Emissività	3	0,100
Telaio		
Materiale		PVC profilo vuoto
Spessore	sf	0 mm
Tipologia	tipo	Con sei camere

 Tipologia
 tipo
 Con sei camere

 Distanziatore
 dist
 Metallo

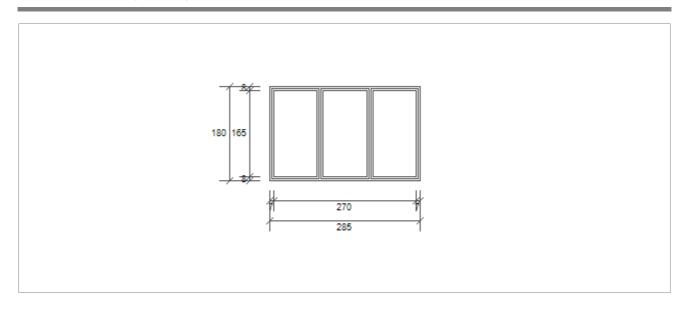
 Trasmittanza
 Uf
 1,100 W/(m²K)

 Ponte termico tra vetro e telaio
 ψfg
 0,060 W/(mK)

Tipo schermatura	Tenda veneziana
Colore	Bianco
Posizione	Schermatura integrata con intercapedine ventilata e presa d'aria dall'esterno
Trasparenza	Opaca

Fattore di schermatura diffuso	g,gl,sh,d	0,29
Fattore di schermatura diretto	g,gl,sh,b	0,11
Fattore di schermatura tende	g,gl,sh/g,gl	

Ch	iusura	OSCIII	ranto
CII	uusura	OSCU	IAIILE


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva c	lovuta alla chiusura ΔR	0,000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	7,4	0,200

Fe02c - 270 x 190 (U - 1,10) - n°1

Larghezza	L	285 cm
Altezza	Н	180 cm
Area del vetro	Ag	4,059 m ²
Area del telaio	Af	1,071 m ²
Area totale del serramento	Aw	5,130 m ²
Perimetro del vetro	р	14,820 m
Trasmittanza	Uw	1,100 W/(m ² K)
Trasmittanza corretta	Uw,corr	1,100 W/(m ² K)

Vetro

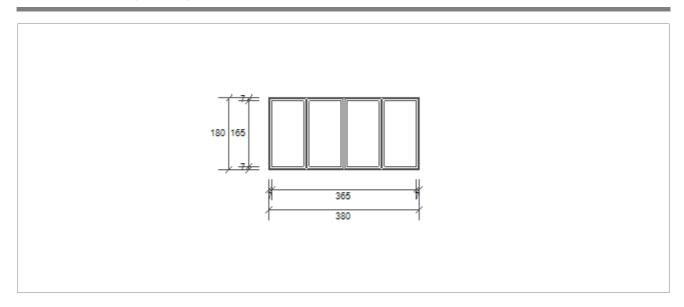
Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo	
Trasmittanza	Ug	1,100 W/(m²K)	
Coeff di trasmissione solare	g gl	0,670	
Emissività	3	0,100	
Telaio			
Materiale		PVC profilo vuoto	
Spessore	sf	0 mm	
Tipologia	tipo	Con sei camere	

Spessoresf0 mmTipologiatipoCon sei camereDistanziatoredistMetalloTrasmittanzaUf1,100 W/(m²K)Ponte termico tra vetro e telaioψfg0,060 W/(mK)

Tipo schermatura	Tenda veneziana
Colore	Bianco
Posizione	Schermatura integrata con intercapedine ventilata e presa d'aria dall'esterno
Trasparenza	Opaca

Fattore di schermatura diffuso	g,gl,sh,d	0,29
Fattore di schermatura diretto	g,gl,sh,b	0,11
Fattore di schermatura tende	g,gl,sh/g,gl	

Ch	incura	oscura	nto
Сn	uusura	oscura	ınte


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva c	lovuta alla chiusura ΔR	0,000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	9,3	0,200

Fe02d - 380 x 180 (U - 1,10) - n°17

Larghezza	L	380 cm
Altezza	Н	180 cm
Area del vetro	Ag	5,280 m ²
Area del telaio	Af	1,560 m ²
Area totale del serramento	Aw	6,840 m ²
Perimetro del vetro	р	19,600 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo	
Trasmittanza	Ug	1,100 W/(m²K)	
Coeff di trasmissione solare	g gl	0,670	
Emissività	3	0,100	
Telaio			
Materiale		PVC profilo vuoto	
Spessore	sf	0 mm	
	_		

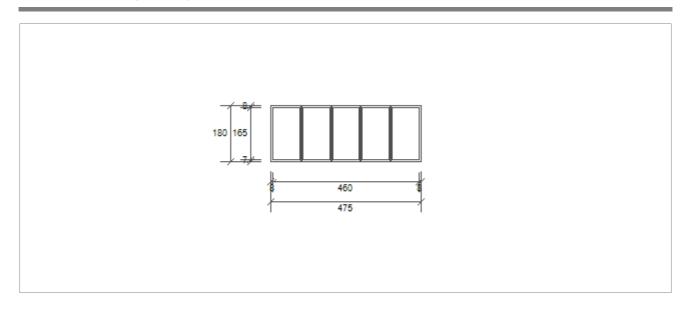
Spessoresf0 mmTipologiatipoCon sei camereDistanziatoredistMetalloTrasmittanzaUf1,100 W/(m²K)Ponte termico tra vetro e telaioψfg0,060 W/(mK)

Schermature mobili

Tipo schermatura	Tenda veneziana	
Colore	Bianco	
Posizione	Schermatura integrata con intercapedine ventilata e presa d'aria dall'esterno	
Trasparenza	Opaca	
Fattore di schermati	ura diffuso - a alsh d - 0.29	

Fattore di schermatura diffuso g,gl,sh,d 0,29
Fattore di schermatura diretto g,gl,sh,b 0,11
Fattore di schermatura tende g,gl,sh/g,gl -

Ch	incu	ra no	CIIP	ante
Cn	ıusuı	ra os	cur	ante


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva c	lovuta alla chiusura ΔR	0,000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	11,2	0,200

Fe02e - 475 x 180 (U - 1,10) - n°10

Larghezza	L	475 cm
Altezza	Н	180 cm
Area del vetro	Ag	6,930 m ²
Area del telaio	Af	1,620 m ²
Area totale del serramento	Aw	8,550 m ²
Perimetro del vetro	р	24,900 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo	
Trasmittanza	Ug	1,100 W/(m ² K)	
Coeff di trasmissione solare	g gl	0,670	
Emissività	ε	0,100	
Telaio			
Materiale		PVC profilo vuoto	
Spessore	sf	0 mm	
The election			

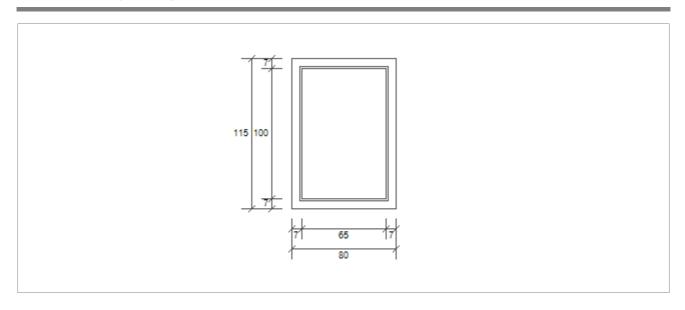
Spessoresf0 mmTipologiatipoCon sei camereDistanziatoredistMetalloTrasmittanzaUf1,100 W/(m²K)Ponte termico tra vetro e telaioψfg0,060 W/(mK)

Schermature mobili

Tipo schermatura	Tenda veneziana
Colore	Bianco
Posizione	Schermatura integrata con intercapedine ventilata e presa d'aria dall'esterno
Trasparenza Opaca	
Fattore di schermati	ura diffuso g.gl.sh.d 0.29

Fattore di schermatura diritto g,gl,sh,b 0,11
Fattore di schermatura tende g,gl,sh/g,gl -

Ch	iusı	ıra	nsc	ııra	nto
u	ıusı	II a	USC	uıa	1116


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva d	lovuta alla chiusura ΛR	0.000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	13,1	0,200

Fe03 - 80 x 115 (U - 1,10) - n°32

Larghezza	L	80 cm
Altezza	Н	115 cm
Area del vetro	Ag	0,650 m ²
Area del telaio	Af	0,270 m ²
Area totale del serramento	Aw	0,920 m²
Perimetro del vetro	р	3,300 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo
Trasmittanza	Ug	1,100 W/(m ² K)
Coeff di trasmissione solare	ggl	0,670
Emissività	3	0,100
Telaio		
Materiale		PVC profilo vuoto

Spessore sf Tipologia tipo Distanziatore dist Trasmittanza Uf

Ponte termico tra vetro e telaio

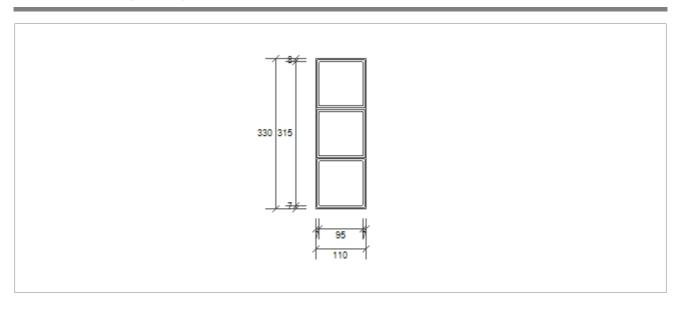
Con sei camere
Metallo
1,100 W/(m ² K)
0,060 W/(mK)

0 mm

ψfg

Tipo schermatura	Tenda		
Colore	-		
Posizione	Veneziane	bianche - Int	erna
Trasparenza	-		
Fattore di schermatur	a diffuso	g,gl,sh,d	
Fattore di schermatur	a diretto	g,gl,sh,b	-
Fattore di schermatur	a tende	g,gl,sh/g,gl	0,25

Ch	iusura	OSCII	ranto
CII	uusura	USCU	Iaiie


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva c	lovuta alla chiusura ΔR	0,000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)	
Me01a - Parete - spallette serramento (Ponte termico)	3,9	0,200	

Fe04a - 110 x 330 (U - 1,10) - n°7

Larghezza	L	110 cm
Altezza	Н	330 cm
Area del vetro	Ag	2,765 m ²
Area del telaio	Af	0,865 m ²
Area totale del serramento	Aw	3,630 m²
Perimetro del vetro	р	11,520 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m ² K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo	
Trasmittanza	Ug	1,100 W/(m²K)	
Coeff di trasmissione solare	ggl	0,670	
Emissività	3	0,100	
Telaio			
Materiale		PVC profilo vuoto	
Spessore	sf	0 mm	
Tipologia	tipo	Con sei camere	
Distanziatore	dist	Metallo	

1,100 W/(m²K) 0,060 W/(mK)

Uf

ψfg

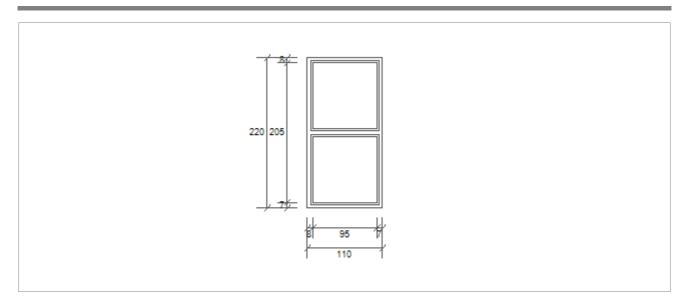
Schermature mobili

Ponte termico tra vetro e telaio

Trasmittanza

Tipo schermatura	Tenda					
Colore	_					
Posizione	Veneziane	bianche - Int	erna			
Trasparenza	_					
Fattore di schermatu	ra diffuso	g,gl,sh,d	-			
Fattore di schermatu	ra diretto	g,gl,sh,b	-			
Fattore di schermatu	ra tende	g,gl,sh/g,gl	0,25			

Ch	iusura	OSCIII	ranto
CII	uusura	OSCU	IAIILE


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva c	lovuta alla chiusura ΔR	0,000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	8,8	0,200

Fe04b - 110 x 220 (U - 1,10) - n°1

Larghezza	L	110 cm
Altezza	Н	220 cm
Area del vetro	Ag	1,834 m ²
Area del telaio	Af	0,586 m ²
Area totale del serramento	Aw	2,420 m ²
Perimetro del vetro	р	7,660 m
Trasmittanza	Uw	1,100 W/(m ² K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

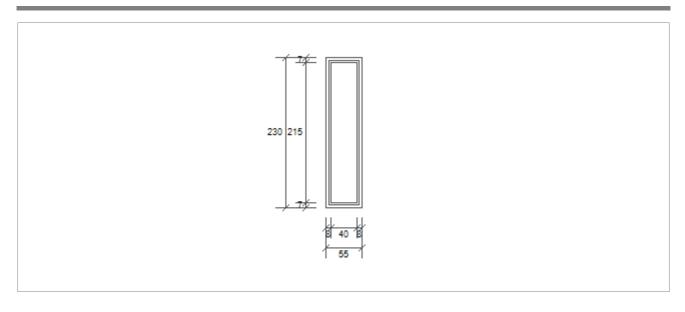
Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo
Trasmittanza	Ug	1,100 W/(m ² K)
Coeff di trasmissione solare	ggl	0,670
Emissività	3	0,100
Telaio		

reiaio		
Materiale		Metallo
Spessore	sf	52 mm
Tipologia	tipo	Con taglio termico
Distanziatore	dist	Metallo
Trasmittanza	Uf	1,100 W/(m²K)
Ponte termico tra vetro e telaio	ψfg	0,060 W/(mK)

Tipo schermatura	Tenda				
Colore	-				
Posizione	Veneziane	bianche - Int	erna		
Trasparenza	-				
Fattore di schermatu	ura diffuso	g,gl,sh,d	-		
Fattore di schermatu	ura diretto	g,gl,sh,b	-		
Fattore di schermatu	ura tende	g,gl,sh/g,gl	0,25		

~ .	•			
(n	iusur	a ns	rura	nte
•••	ıusuı	4 03	-u:u	


Tipo chiusura	_		
Permeabilità	-		
Resistenza termica aggiuntiva c	lovuta alla chiusura ΔR	0,000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	6,6	0,200

Fe05 - 55 x 230 (U - 1,10) - n°14

Larghezza	L	55 cm
Altezza	Н	230 cm
Area del vetro	Ag	0,860 m ²
Area del telaio	Af	0,405 m ²
Area totale del serramento	Aw	1,265 m ²
Perimetro del vetro	p	5,100 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

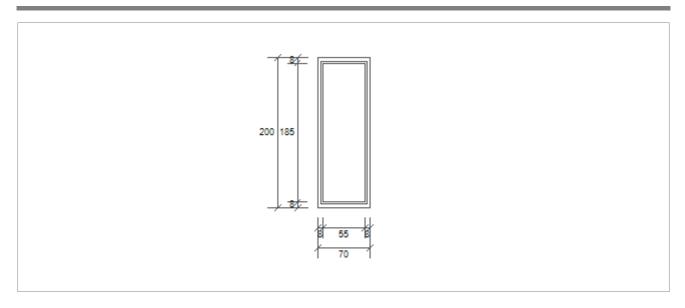
Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo
Trasmittanza	Ug	1,100 W/(m ² K)
Coeff di trasmissione solare	g gl	0,670
Emissività	8	0,100
Telaio		
Materiale		PVC profilo vuoto

relaio		
Materiale		_ F
Spessore	sf	_(
Tipologia	tipo	_(
Distanziatore	dist	1
Trasmittanza	Uf	_
Ponte termico tra vetro e telaio	ψfg	(

0 mm	
Con sei camere	
Metallo	
1,100 W/(m ² K)	
0,060 W/(mK)	

Tipo schermatura	Tenda					
Colore	-					
Posizione	Veneziane	bianche - Int	erna			
Trasparenza	-					
Fattore di schermatu	ra diffuso	g,gl,sh,d	-			
Fattore di schermatu	ra diretto	g,gl,sh,b	-			
Fattore di schermatu	ra tende	g,gl,sh/g,gl	0,25	·	·	

Ch	iusı	ıra	nsc	ııra	nto
u	ıusı	II a	USC	uıa	1116


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva d	lovuta alla chiusura ΛR	0.000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	5,7	0,200

Fe06 - 70 x 200 (U - 1,10) - n°1

Larghezza	L	70 cm
Altezza	Н	200 cm
Area del vetro	Ag	1,017 m ²
Area del telaio	Af	0,383 m ²
Area totale del serramento	Aw	1,400 m ²
Perimetro del vetro	р	4,800 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo
Trasmittanza	Ug	1,100 W/(m ² K)
Coeff di trasmissione solare	ggl	0,670
Emissività	3	0,100
Telaio		
Matorialo		PVC profile yuoto

Materiale

Spessore sf Tipologia tipo Distanziatore dist Trasmittanza Uf

ψfg

Ponte termico tra vetro e telaio

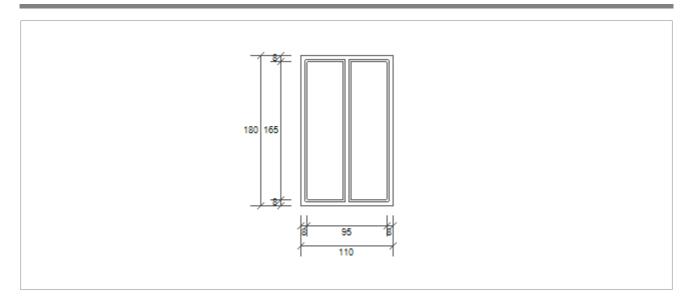
PVC profilo vuoto 0 mm Con sei camere Metallo 1,100 W/(m²K) 0,060 W/(mK)

Schermature mobili

Tipo schermatura Tenda Colore Posizione Veneziane bianche - Interna Trasparenza Fattore di schermatura diffuso g,gl,sh,d

Fattore di schermatura diretto g,gl,sh,b Fattore di schermatura tende g,gl,sh/g,gl 0,25

Ch	iusura	OSCIII	ranto
CII	uusura	OSCU	IAIILE


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva c	lovuta alla chiusura ΔR	0,000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	5,4	0,200

Fe07 - 110 x 180 (U - 1,10) - n°1

Larghezza	L	110 cm
Altezza	Н	180 cm
Area del vetro	Ag	1,403 m ²
Area del telaio	Af	0,577 m ²
Area totale del serramento	Aw	1,980 m ²
Perimetro del vetro	р	8,300 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

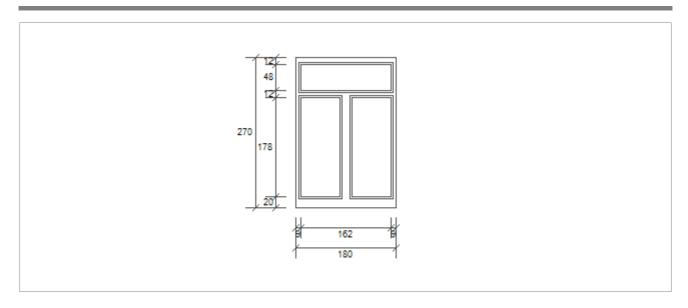
Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo	
Trasmittanza	Ug	1,100 W/(m ² K)	
Coeff di trasmissione solare	g gl	0,670	
Emissività	ε	0,100	
Telaio			
Materiale		PVC profilo vuoto	
Spessore	sf	0 mm	

Spessore	sf	0 mm
Tipologia	tipo	Con sei camere
Distanziatore	dist	Metallo
Trasmittanza	Uf	1,100 W/(m ² K)
Ponte termico tra vetro e telaio	ψfg	0,060 W/(mK)

Tipo schermatura	Tenda					
Colore	-					
Posizione	Veneziane	bianche - Int	erna			
Trasparenza	-					
Fattore di schermatu	ra diffuso	g,gl,sh,d	-			
Fattore di schermatu	ra diretto	g,gl,sh,b	-			
Fattore di schermatu	ra tende	g,gl,sh/g,gl	0,25	·	·	

Chiusura oscurante

Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva d	dovuta alla chiusura ΔR	0,000 m ² K/W	


Permeabilità all'aria

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	5,8	0,200

Pe01 - 180 x 210 (+60) (U - 1,10) - n°12

Larghezza	L	180 cm
Altezza	Н	210 cm
Area del vetro	Ag	3,314 m ²
Area del telaio	Af	1,546 m ²
Area totale del serramento	Aw	4,860 m ²
Perimetro del vetro	р	14,176 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

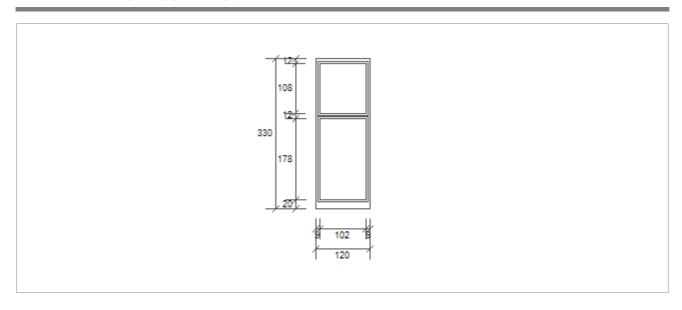
Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo
Trasmittanza	Ug	1,100 W/(m ² K)
Coeff di trasmissione solare	ggl	0,670
Emissività	3	0,100
Telaio		

	PVC profilo vuoto
sf	0 mm
tipo	Con sei camere
dist	Metallo
Uf	1,100 W/(m ² K)
ψfg	0,060 W/(mK)
	tipo dist Uf

Tipo schermatura	Tenda	Tenda						
Colore	-							
Posizione	Veneziane bianche - Interna							
Trasparenza	-	-						
Fattore di schermatu	ıra diffuso	g,gl,sh,d	_					
Fattore di schermatu	ıra diretto	g,gl,sh,b	-					
Fattore di schermatu	ıra tende	g,gl,sh/g,gl	0,25					

Ch	iusura	OSCII	ranto
CII	uusura	USCU	Iaiie


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva c	lovuta alla chiusura ΛR	0.000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	9,0	0,200

Pe02 - 120 x 210 (+120) (U - 1,10) - n°2

Larghezza	L	120 cm
Altezza	Н	210 cm
Area del vetro	Ag	2,929 m ²
Area del telaio	Af	1,031 m ²
Area totale del serramento	Aw	3,960 m ²
Perimetro del vetro	р	9,816 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

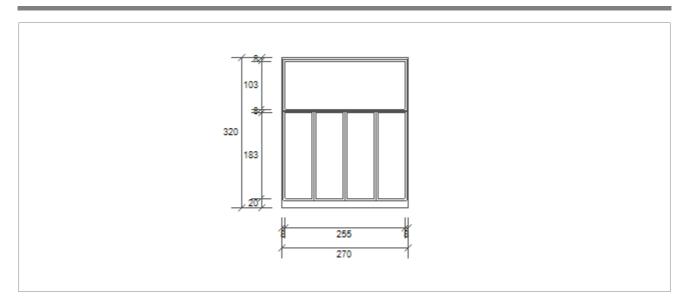
Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo	
Trasmittanza	Ug	1,100 W/(m ² K)	
Coeff di trasmissione solare	ggl	0,670	
Emissività	3	0,100	
Telaio			
Materiale		Metallo	
_	_		

MaterialeMetalloSpessoresf52 mmTipologiatipoCon taglio termicoDistanziatoredistMetalloTrasmittanzaUf1,100 W/(m²K)Ponte termico tra vetro e telaioψfg0,060 W/(mK)

Tipo schermatura	Tenda				
Colore	-				
Posizione	Veneziane	bianche - Int	erna		
Trasparenza	_				
Fattore di schermatu	ra diffuso	g,gl,sh,d	_		
Fattore di schermatu	ra diretto	g,gl,sh,b	-		
Fattore di schermatu	ra tende	g,gl,sh/g,gl	0,25		

\sim	•		
(h	HILLSHIPS	חפרו	ırante
~…	II U J U I L		


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva c	lovuta alla chiusura ΔR	0,000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici		Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)	
	Me01a - Parete - spallette serramento (Ponte termico)	9,0	0,200	

Pe03 - 150 (+60+60) x 200 (+120) (U - 1,10) - n°1

Larghezza	L	270 cm
Altezza	Н	210 cm
Area del vetro	Ag	6,857 m ²
Area del telaio	Af	1,783 m ²
Area totale del serramento	Aw	8,640 m ²
Perimetro del vetro	р	26,400 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo	
Trasmittanza	Ug	1,100 W/(m ² K)	
Coeff di trasmissione solare	ggl	0,670	
Emissività	3	0,100	
Telaio			
Materiale		Metallo	
Spessore	sf	52 mm	
Tipologia	tipo	Con taglio termico	

Tipologia tipo Con taglio termico

Distanziatore dist Metallo

Trasmittanza Uf 1,100 W/(m²K)

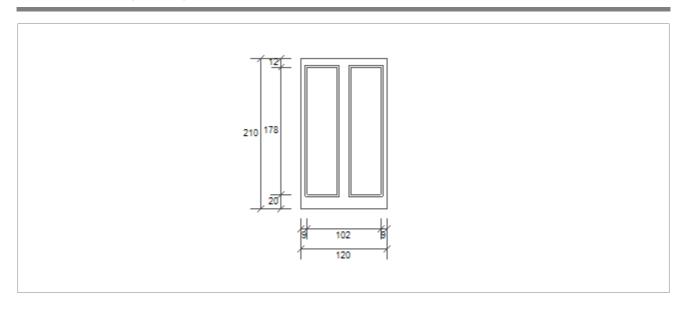
Ponte termico tra vetro e telaio ψfg 0,060 W/(mK)

Schermature mobili

Fattore di schermatura tende g,gl,sh/g,gl 0,25

Tipo schermatura	Tenda					
Colore	-					
Posizione	Veneziane	oianche - Int	terna			
Trasparenza	-					
Fattore di schermatura		g,gl,sh,d	_			
Fattore di schermatura	diretto	a,al,sh,b	-			

Ch	incura	oscurante
CII	แนรนเล	OSCULATILE


Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva d	dovuta alla chiusura ΔR	0,000 m ² K/W	

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	11,8	0,200

Pe04 - 120 x 210 (U - 1,10) - n°1

Larghezza	L	120 cm
Altezza	Н	210 cm
Area del vetro	Ag	1,460 m ²
Area del telaio	Af	1,060 m ²
Area totale del serramento	Aw	2,520 m ²
Perimetro del vetro	р	8,760 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo	
Trasmittanza	Ug	1,100 W/(m ² K)	
Coeff di trasmissione solare	ggl	0,670	
Emissività	3	0,100	
Telaio			
Materiale		PVC profilo vuoto	

Materiale Spessore sf Tipologia tipo Distanziatore dist Trasmittanza Uf

Fattore di schermatura tende g,gl,sh/g,gl 0,25

Ponte termico tra vetro e telaio

Con sei camere
Metallo
1,100 W/(m ² K)
0.060 W/(mK)

0 mm

ψfg

Schermature mobili

Tipo schermatura	Tenda						
Colore	-						
Posizione	Veneziane bianche - Interna						
Trasparenza	-						
Fattore di schermatur Fattore di schermatur		g,gl,sh,d g,gl,sh,b	-				

	hi	usu	ra	06	~ 11	ra	nto
u	ш	usu	Га	()5		га	пе

Tipo chiusura	-	
Permeabilità	-	
Resistenza termica aggiuntiva c	lovuta alla chiusura ΔR	0,000 m ² K/W

Permeabilità all'aria

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture associate al serramento

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	6,6	0,200

Pe05 - 180 x 210 (U - 1,10) - n°1

Larghezza	L	180 cm
Altezza	Н	210 cm
Area del vetro	Ag	2,713 m ²
Area del telaio	Af	1,067 m ²
Area totale del serramento	Aw	3,780 m ²
Perimetro del vetro	р	10,168 m
Trasmittanza	Uw	1,100 W/(m²K)
Trasmittanza corretta	Uw,corr	1,100 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo
Trasmittanza	Ug	1,100 W/(m ² K)
Coeff di trasmissione solare	ggl	0,670
Emissività	8	0,100
Telaio		

Materiale		PVC profilo vuoto
Spessore	sf	0 mm
Tipologia	tipo	Con sei camere
Distanziatore	dist	Metallo
Trasmittanza	Uf	1,100 W/(m²K)
Ponte termico tra vetro e telaio	ψfg	0,060 W/(mK)

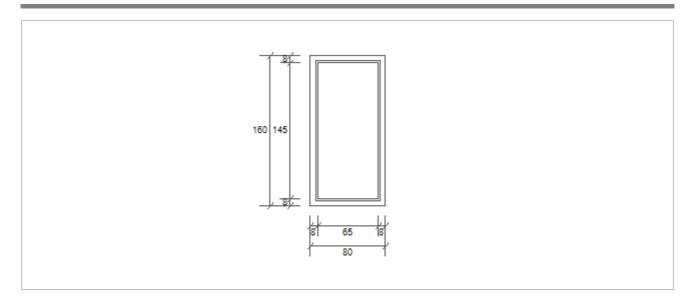
Schermature mobili

Tipo schermatura	Tenda							
Colore								
Posizione	Veneziane bianche - Interna							
Trasparenza	-							
Fattore di schermatu	ıra diffuso	g,gl,sh,d	_					
Fattore di schermatu	ıra diretto	g,gl,sh,b	-					
Fattore di schermatu	ıra tende	g,gl,sh/g,gl	0,25					

	hi	usu	ra	06	~ 11	ra	nto
u	ш	usu	Га	()5		га	пе

Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva c	lovuta alla chiusura ΔR	0,000 m ² K/W	

Permeabilità all'aria


Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture associate al serramento

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	7,8	0,200

W01 - 80 x 160

Larghezza	L	80 cm
Altezza	Н	160 cm
Area del vetro	Ag	0,942 m²
Area del telaio	Af	0,338 m²
Area totale del serramento	Aw	1,280 m ²
Perimetro del vetro	р	4,200 m
Trasmittanza	Uw	1,400 W/(m ² K)
Trasmittanza corretta	Uw,corr	1,400 W/(m ² K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo
Trasmittanza	Ug	1,100 W/(m ² K)
Coeff di trasmissione solare	g gl	0,670
Emissività	3	0,100
Telaio		

1 0.0.0		
Materiale		Metallo
Spessore	sf	52 mm
Tipologia	tipo	Con taglio termico
Distanziatore	dist	Metallo
Trasmittanza	Uf	1,100 W/(m ² K)
Ponte termico tra vetro e telaio	ψfg	0,060 W/(mK)

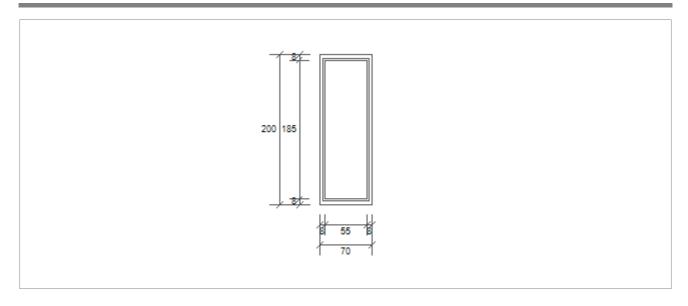
Schermature mobili

Tipo schermatura	Tenda		
Colore	-		
Posizione	Veneziane	bianche - Int	terna
Trasparenza	-		
Fattore di schermatu	ra diffuso	g,gl,sh,d	
Fattore di schermatu	ra diretto	g,gl,sh,b	
Fattore di schermatu	ra tende	g,gl,sh/g,gl	0,25

Ch	iusura	OSCIII	ranto
CII	uusura	OSCU	IAIILE

Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva d	lovuta alla chiusura ΛR	0.000 m ² K/W	

Permeabilità all'aria


Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture associate al serramento

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	4,8	0,200

W02 - 70 x 200

Larghezza	L	70 cm
Altezza	Н	200 cm
Area del vetro	Ag	1,017 m ²
Area del telaio	Af	0,383 m ²
Area totale del serramento	Aw	1,400 m ²
Perimetro del vetro	р	4,800 m
Trasmittanza	Uw	1,400 W/(m²K)
Trasmittanza corretta	Uw,corr	1,400 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo
Trasmittanza	Ug	1,100 W/(m ² K)
Coeff di trasmissione solare	ggl	0,670
Emissività	8	0,100
Telaio		
Materiale		Metallo

Materiale		Metallo
Spessore	sf	52 mm
Tipologia	tipo	Con taglio termico
Distanziatore	dist	Metallo

Fattore di schermatura tende g,gl,sh/g,gl 0,25

Trasmittanza Uf $1,100 \text{ W/(m}^2\text{K)}$ Ponte termico tra vetro e telaio ψ fg 0,060 W/(mK)

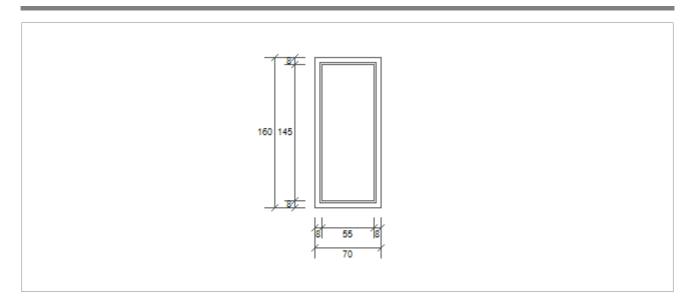
Schermature mobili

Tipo schermatura	Tenda				
Colore	-				
Posizione	Veneziane bian	nche - Inter	na		
Trasparenza	_				
Fattore di schermatu	ra diffuso g,g	gl,sh,d	-		
Fattore di schermatu	ra diretto g,g	gl,sh,b -	-		

CI-:			
CHIU	sura	oscu	rante

Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva c	lovuta alla chiusura ΔR	0,000 m ² K/W	

Permeabilità all'aria


Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture associate al serramento

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	5,4	0,200

W03 - 70 x 160

Larghezza	L	70 cm
Altezza	Н	160 cm
Area del vetro	Ag	0,797 m ²
Area del telaio	Af	0,323 m ²
Area totale del serramento	Aw	1,120 m ²
Perimetro del vetro	р	4,000 m
Trasmittanza	Uw	1,400 W/(m²K)
Trasmittanza corretta	Uw,corr	1,400 W/(m²K)

Vetro

Tipologia	tipo	Doppio vetro con rivestimento basso-emissivo
Trasmittanza	Ug	1,100 W/(m ² K)
Coeff di trasmissione solare	ggl	0,670
Emissività	3	0,100
Telaio		

Telaio		
Materiale		Metallo
Spessore	sf	52 mm
Tipologia	tipo	Con taglio termico
Distanziatore	dist	Metallo
Trasmittanza	Uf	1,100 W/(m ² K)
Ponte termico tra vetro e telaio	ψfg	0,060 W/(mK)

Schermature mobili

Tipo schermatura	Tenda					
Colore	_					
Posizione	Veneziane	bianche - Int	erna			
Trasparenza	_					
Fattore di schermatu	ra diffuso	g,gl,sh,d	-			
Fattore di schermatu	ra diretto	g,gl,sh,b	-			
Fattore di schermatu	ra tende	g,gl,sh/g,gl	0,25			

Ch	iusura	OSCIII	ranto
CII	uusura	OSCU	IAIILE

Tipo chiusura	-		
Permeabilità	-		
Resistenza termica aggiuntiva d	lovuta alla chiusura ΛR	0.000 m ² K/W	

Permeabilità all'aria

Classe permeabilità all'aria del serramento secondo UNI 1026 (MIN 1-MAX 4)

La classe di permeabilità all'aria è indicata per i serramenti in funzione dei dati dichiarati dal produttore.

Strutture associate al serramento

Strutture opache e ponti termici	Area [m²] o lunghezza [m]	Trasmittanza W/(m²K) o W/(mK)
Me01a - Parete - spallette serramento (Ponte termico)	4,6	0,200

RELAZIONE DI CALCOLO DEL PONTE TERMICO

Calcolo della trasmittanza lineica del ponte termico e verifica del rischio di formazione di muffa

EDIFICIO	Via Carrobbio 5 - Concesio (BS)
RELAZIONE a cura di	
DATA	04/02/2025
	Firma:

INDICE

- 1. PREMESSA METODOLOGICA
- 2. NORMATIVA DI RIFERIMENTO e METODO DI CALCOLO
- 3. VALIDAZIONE DEL METODO DI CALCOLO
- **4.1** DETTAGLI DEL PONTE TERMICO M01a Parete pavimento verso esterno (portico)
- 4.2 CONDIZIONI AL CONTORNO
- 4.3 DISCRETIZZAZIONE DEGLI ELEMENTI
- **4.4** CURVE DI TEMPERATURA
- 4.5 RISULTATI DI CALCOLO
- 4.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA
- **5.1** DETTAGLI DEL PONTE TERMICO Me01a Angolo rientrante parete perimetrale
- 5.2 CONDIZIONI AL CONTORNO
- **5.3** DISCRETIZZAZIONE DEGLI ELEMENTI
- **5.4** CURVE DI TEMPERATURA
- 5.5 RISULTATI DI CALCOLO
- 5.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA
- **6.1** DETTAGLI DEL PONTE TERMICO Me01a Angolo sporgente parete perimetrale
- 6.2 CONDIZIONI AL CONTORNO
- **6.3** DISCRETIZZAZIONE DEGLI ELEMENTI
- **6.4** CURVE DI TEMPERATURA
- **6.5** RISULTATI DI CALCOLO
- 6.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA
- 7.1 DETTAGLI DEL PONTE TERMICO Me01a Parete davanzale serramento
- 7.2 CONDIZIONI AL CONTORNO
- 7.3 DISCRETIZZAZIONE DEGLI ELEMENTI
- 7.4 CURVE DI TEMPERATURA
- **7.5** RISULTATI DI CALCOLO
- 7.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA
- **8.1** DETTAGLI DEL PONTE TERMICO Me01a Parete pavimento vs vespaio
- 8.2 CONDIZIONI AL CONTORNO
- **8.3** DISCRETIZZAZIONE DEGLI ELEMENTI
- **8.4** CURVE DI TEMPERATURA
- 8.5 RISULTATI DI CALCOLO

- 8.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA
- 9.1 DETTAGLI DEL PONTE TERMICO Me01a Parete spallette serramento
- 9.2 CONDIZIONI AL CONTORNO
- 9.3 DISCRETIZZAZIONE DEGLI ELEMENTI
- **9.4** CURVE DI TEMPERATURA
- 9.5 RISULTATI DI CALCOLO
- 9.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA
- 10.1 DETTAGLI DEL PONTE TERMICO Me01a Parete collegamento setti
- 10.2 CONDIZIONI AL CONTORNO
- 10.3 DISCRETIZZAZIONE DEGLI ELEMENTI
- 10.4 CURVE DI TEMPERATURA
- 10.5 RISULTATI DI CALCOLO
- 10.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA
- 11.1 DETTAGLI DEL PONTE TERMICO Me01a Parete solaio
- 11.2 CONDIZIONI AL CONTORNO
- 11.3 DISCRETIZZAZIONE DEGLI ELEMENTI
- **11.4** CURVE DI TEMPERATURA
- 11.5 RISULTATI DI CALCOLO
- 11.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA
- 12.1 DETTAGLI DEL PONTE TERMICO SS10P Parete solaio vs sottotetto
- 12.2 CONDIZIONI AL CONTORNO
- 12.3 DISCRETIZZAZIONE DEGLI ELEMENTI
- 12.4 CURVE DI TEMPERATURA
- **12.5** RISULTATI DI CALCOLO
- 12.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA

1. PREMESSA

Il ponte termico è una discontinuità dell'involucro edilizio nella quale la resistenza termica non è uniforme e cambia in modo significativo; i ponti termici localizzati per la maggioranza dei casi nelle giunzioni tra gli elementi e provocano due effetti:

- Modifica del flusso termico
- Modifica della temperatura superficiale

rispetto agli stessi elementi privi di ponte termico.

La presente relazione riporta la valutazione della trasmittanza lineica ψ del ponte termico tramite analisi ad elementi finiti, per ponti termico geometrico o strutturale.

Per ciascun ponte termico è analizzata la distribuzione del flusso termico, il coefficiente di accoppiamento termico e la mappa delle temperature interne al nodo. La valutazione del rischio di formazione di muffa e quindi di condensa superficiale si ottiene valutando la temperatura superficiale raggiunta sulla faccia interna.

2. NORMA DI RIFERIMENTO E METODO DI CALCOLO

Di seguito le norme di riferimento utilizzate per il calcolo.

UNI EN ISO 10211 – Thermal bridges in building construction – Heat flows and surface temperatures General calculation methods.

UNI EN ISO 13788 - Hygrothermal performance of building components and building elements – Internal surface temperature to avoid critical surface humidity and interstitial condensation - Calculation methods **UNI EN ISO 6946 -** Building components and building elements - Thermal resistance and thermal transmittance - Calculation method

Il metodo di calcolo utilizzato nella valutazione del ponte termico si basa su quanto indicato dalla norma UNI EN ISO 10211.

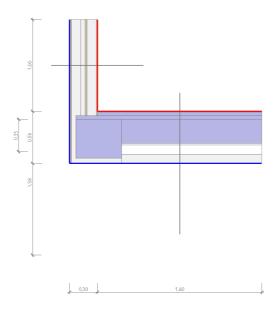
La norma specifica la definizione dei limiti geometrici del modello e dei criteri da adottare per la sua suddivisione, le condizioni termiche al contorno, i valori termici e le relazioni da utilizzare.

La norma si fonda sulle seguenti ipotesi:

- le condizioni termiche si intendono stazionarie
- tutte le proprietà fisiche sono indipendenti dalla temperatura
- non ci sono sorgenti di calore all'interno delle strutture edilizie

3. VALIDAZIONE DEL METODO DI CALCOLO

L'Appendice A della norma UNI 10211 riporta le condizioni generali e i requisiti che deve rispettare il metodo numerico per considerarsi validato.


Il presente metodo numerico rispetta tutte le regole contenute nell'appendice A. In particolare:

- Fornisce le temperature e i flussi termici
- Consente di calcolare temperature e flussi termici anche in posizioni diverse da quelle indicate.
- Converge alla soluzione analitica (dove esiste) all'aumentare delle suddivisioni.
- Determina il numero di suddivisioni seguendo questa regola: esegue la somma dei valori assoluti di tutti i flussi termici che entrano nell'oggetto considerato, per n suddivisioni e per 2n suddivisioni. La differenza tra i due risultati non deve essere maggiore del 2% o in alternativa si aumenta il numero di suddivisioni fino a che il criterio non è soddisfatto.

• Le iterazioni di calcolo proseguono finché la somma di tutti i flussi termici (positivi o negativi) entranti nell'oggetto, divisa per la metà della somma dei valori assoluti dei medesimi flussi termici è minore di 0.001

4.1 DETTAGLI DEL PONTE TERMICO - M01a - Parete - pavimento verso esterno (portico)

Si riporta di seguito il modello geometrico di ponte termico con il dettaglio dei materiali componenti e delle conduttività termiche utilizzate nella valutazione della trasmittanza.

Dettaglio dei materiali

	Materiale	λ [W/mK]
2	Intonaco esterno	0,900
4	Rockwool Acoustic 225 Plus	0,033
5	Rockwool Acoustic 225 Plus	0,033
6	Cartongesso in lastre	0,210
7	Aria 10 mm (flusso orizzontale)	0,070
8	Rockwool Acoustic 225 Plus	0,033
9	Cartongesso in lastre	0,210
34	pavimento in PVC λ = 0,19 - PVC-Belag λ = 0,19	0,190
35	Massetto autolivellante fermacell	1,100
36	Leca Cls 1600	0,540
25	Cartongesso in lastre	0,210
38	Solaio in laterocemento	0,743
39	Intonaco esterno	0,900
40	Aria 100 mm (flusso verticale discendente)	0,450
41	Rockwool Acoustic 225 Plus	0,033
42	Intonaco plastico per cappotto	0,330
37	Calcestruzzo (2200 kg a m3)	1,650
42	Intonaco plastico per cappotto	0,330
3	Cartongesso in lastre	0,210
1	Calcestruzzo (2200 kg a m3)	1,650

4.2 CONDIZIONI AL CONTORNO

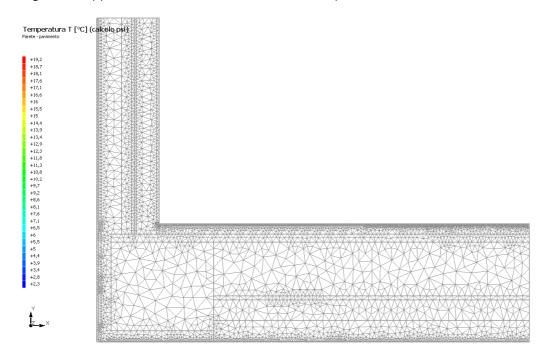
La valutazione è eseguita nel comune di Concesio - (BS).

Di seguito il dettaglio delle condizioni al contorno utilizzate per la valutazione della trasmittanza termica lineica.

Nelle condizioni al contorno sono specificati l'ambiente interno e uno o più ambienti esterni con le relative resistenze di calcolo.

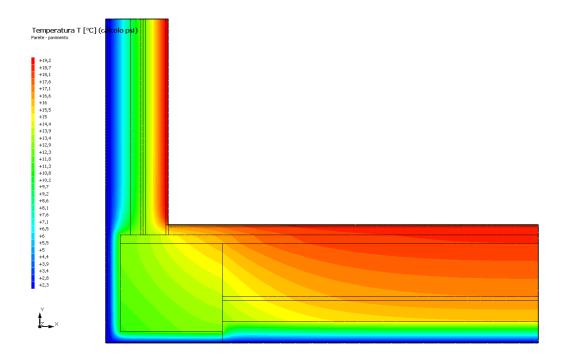
Dettaglio dei confini

	Confine	T [°C]	R [m ² K/W]
1	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
2	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
3	Temperatura interna: direzione discendente del flusso	20,0	0,17
4	Esterno	2,3	0,04


4.3 DISCRETIZZAZIONE DEGLI ELEMENTI

Per portare a convergenza il risultato finale il Ponte termico calcolato è stato suddiviso in triangoli, la mesh di calcolo.

Numero di triangoli utilizzati per la discretizzazione degli elementi


5.661

Di seguito la rappresentazione della mesh di calcolo del ponte termico:

4.4 CURVE DI TEMPERATURA

In base al modello di ponte termico e alle sue condizioni al contorno si ottiene la seguente distribuzione di temperatura all'interno degli elementi:

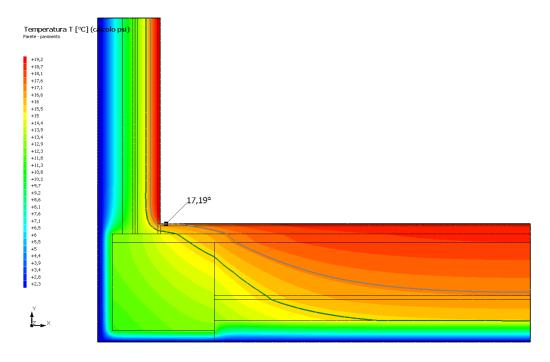
4.5 RISULTATI DI CALCOLO

Di seguito vengono esposti i risultati di calcolo relativi alla struttura di ponte termico.

Il principale risultato il flusso termico per ogni metro di lunghezza e per ogni grado di differenza di temperatura: la trasmittanza termica lineica del ponte termico viene ottenuta per differenza tra la dispersione del modello geometrico comprensivo di ponte termico e la dispersione in assenza di discontinuità.

Flusso Φ	15,54	W/m
Ψ interno	0,3005	W/mK
Ψ esterno	0,1526	W/mK
Coefficiente di accoppiamento L2D	0,88	W/mK
Temperatura minima	17,2	°C

4.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA


Il metodo di calcolo della condensa superficiale su superficie interna è contenuto nella norma UNI EN ISO 13788 che prevede il calcolo del fattore di temperatura superficiale fRsi calcolato come segue

$$f_{Rsi} = \frac{\theta si - \theta e}{\theta i - \theta e}$$

Con θ si temperatura superficiale interna [°C]

θe temperatura dell'aria esterna [°C]

θi temperatura dell'aria interna [°C]

La norma precisa che al fine di evitare formazione di muffa, l'umidità superficiale critica da considerare nella valutazione della pressione di saturazione deve essere pari all' 80%.

I dati climatici utilizzati nella verifica sono riferiti al comune di Concesio, BS

Di seguito il dettaglio di pressione e temperatura valutati lungo tutto l'arco dell'anno:

Tipo di calcolo	Classi di concentrazione
Classe di edificio	Edifici con indice di affollamento non noto

Mese	Te [°C]	φe [%]	Pe [Pa]	Δр [Ра]	Pi [Pa]	Psi [Pa]	Tsi [°C]	Ti [°C]	fRsi
ottobre	12,30	80,3	1.148,1	373,3	1.521,5	1.901,8	16,71	20,00	0,5732
novembre	7,00	92,5	926,2	561,5	1.487,7	1.859,7	16,36	20,00	0,7201
dicembre	2,80	98,3	734,0	710,6	1.444,6	1.805,8	15,90	20,00	0,7617
gennaio	2,30	93,6	674,5	728,4	1.402,8	1.753,5	15,44	20,00	0,7425
febbraio	2,80	86,2	643,7	710,6	1.354,3	1.692,8	14,89	20,00	0,7031
marzo	7,90	74,6	794,4	529,5	1.324,0	1.655,0	14,54	20,00	0,5491
aprile	11,40	72,1	971,4	405,3	1.376,7	1.720,9	15,15	20,00	0,4360

Te temperatura esterna media mensile [°C] φe umidità relativa esterna [%] Pe pressione esterna [Pa] ΔP variazione di pressione [Pa] Pi pressione interna [Pa] Psi pressione di saturazione interna [Pa] Tsi Temperatura superficiale interna [°C] fRsi Fattore di resistenza superficiale

ESITO DELLA VERIFICA DI ASSENZA DI MUFFA

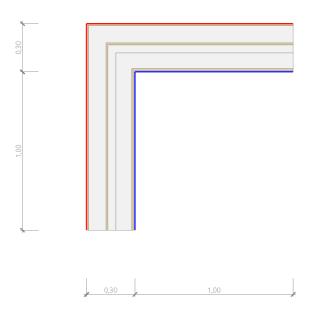
Fattore di resistenza superficiale nel mese critico fRsi

Fattore di resistenza superficiale nel mese critico fRsiAmm

Mese critico

ESITO VERIFICA DI CONDENSA SUPERFICIALE

0,841


0,762

Dicembre

frsi>frsi,max: assenza di muffa

5.1 DETTAGLI DEL PONTE TERMICO - Me01a - Angolo rientrante parete perimetrale

Si riporta di seguito il modello geometrico di ponte termico con il dettaglio dei materiali componenti e delle conduttività termiche utilizzate nella valutazione della trasmittanza.

Dettaglio dei materiali

	Materiale	λ [W/mK]
1	Cartongesso in lastre	0,210
2	Rockwool Acoustic 225 Plus	0,033
4	Cartongesso in lastre	0,210
5	Cartongesso in lastre	0,210
6	Rockwool Acoustic 225 Plus	0,033
7	Cartongesso in lastre	0,210
8	Intonaco esterno	0,900

5.2 CONDIZIONI AL CONTORNO

La valutazione è eseguita nel comune di Concesio - (BS).

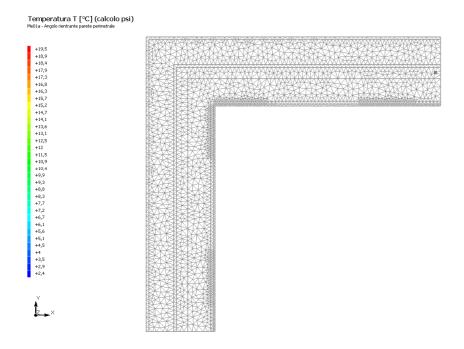
Di seguito il dettaglio delle condizioni al contorno utilizzate per la valutazione della trasmittanza termica lineica.

Nelle condizioni al contorno sono specificati l'ambiente interno e uno o più ambienti esterni con le relative resistenze di calcolo.

Dettaglio dei confini

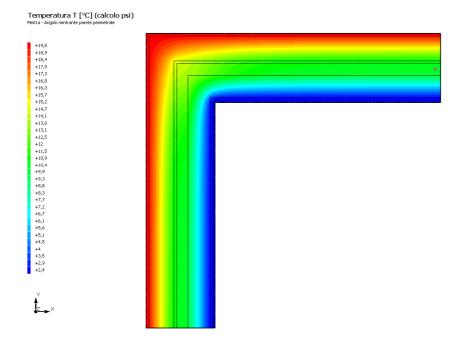
	Confine	T [°C]	R [m ² K/W]
1	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
2	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
3	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04

4	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
---	---	-----	------


5.3 DISCRETIZZAZIONE DEGLI ELEMENTI

Per portare a convergenza il risultato finale il Ponte termico calcolato è stato suddiviso in triangoli, la mesh di calcolo.

Numero di triangoli utilizzati per la discretizzazione degli elementi


2.389

Di seguito la rappresentazione della mesh di calcolo del ponte termico:

5.4 CURVE DI TEMPERATURA

In base al modello di ponte termico e alle sue condizioni al contorno si ottiene la seguente distribuzione di temperatura all'interno degli elementi:

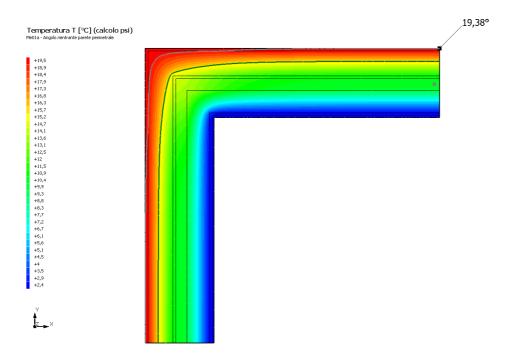
5.5 RISULTATI DI CALCOLO

Di seguito vengono esposti i risultati di calcolo relativi alla struttura di ponte termico.

Il principale risultato il flusso termico per ogni metro di lunghezza e per ogni grado di differenza di temperatura: la trasmittanza termica lineica del ponte termico viene ottenuta per differenza tra la dispersione del modello geometrico comprensivo di ponte termico e la dispersione in assenza di discontinuità.

Flusso Φ	5,61	W/m
Ψ interno	-0,0580	W/mK
Ψ esterno	0,0296	W/mK
Coefficiente di accoppiamento L2D	0,32	W/mK
Temperatura minima	19,4	°C

5.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA


Il metodo di calcolo della condensa superficiale su superficie interna è contenuto nella norma UNI EN ISO 13788 che prevede il calcolo del fattore di temperatura superficiale fRsi calcolato come segue

$$f_{Rsi} = \frac{\theta si - \theta e}{\theta i - \theta e}$$

Con θ si temperatura superficiale interna [°C]

θe temperatura dell'aria esterna [°C]

θi temperatura dell'aria interna [°C]

La norma precisa che al fine di evitare formazione di muffa, l'umidità superficiale critica da considerare nella valutazione della pressione di saturazione deve essere pari all' 80%.

I dati climatici utilizzati nella verifica sono riferiti al comune di Concesio, BS

Di seguito il dettaglio di pressione e temperatura valutati lungo tutto l'arco dell'anno:

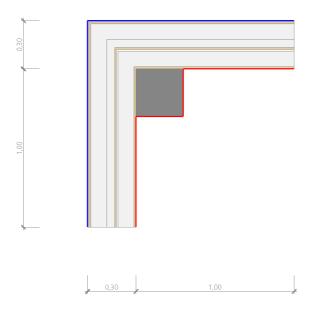
Tipo di calcolo	Classi di concentrazione
Classe di edificio	Edifici con indice di affollamento non noto

Mese	Te [°C]	φe [%]	Pe [Pa]	Δр [Ра]	Pi [Pa]	Psi [Pa]	Tsi [°C]	Ti [°C]	fRsi
ottobre	12,30	80,3	1.148,1	373,3	1.521,5	1.901,8	16,71	20,00	0,5732
novembre	7,00	92,5	926,2	561,5	1.487,7	1.859,7	16,36	20,00	0,7201
dicembre	2,80	98,3	734,0	710,6	1.444,6	1.805,8	15,90	20,00	0,7617
gennaio	2,30	93,6	674,5	728,4	1.402,8	1.753,5	15,44	20,00	0,7425
febbraio	2,80	86,2	643,7	710,6	1.354,3	1.692,8	14,89	20,00	0,7031
marzo	7,90	74,6	794,4	529,5	1.324,0	1.655,0	14,54	20,00	0,5491
aprile	11,40	72,1	971,4	405,3	1.376,7	1.720,9	15,15	20,00	0,4360

Te temperatura esterna media mensile [°C] φe umidità relativa esterna [%]
Pe pressione esterna [Pa]
ΔP variazione di pressione [Pa]
Pi pressione interna [Pa]
Psi pressione di saturazione interna [Pa]
Tsi Temperatura superficiale interna [°C]
fRsi Fattore di resistenza superficiale

ESITO DELLA VERIFICA DI ASSENZA DI MUFFA

Fattore di resistenza superficiale nel mese critico fRsi 0,965


Fattore di resistenza superficiale nel mese critico fRsiAmm 0,762

Mese critico Dicembre

ESITO VERIFICA DI CONDENSA SUPERFICIALE frsi>frsi,max: assenza di muffa

6.1 DETTAGLI DEL PONTE TERMICO - Me01a - Angolo sporgente parete perimetrale

Si riporta di seguito il modello geometrico di ponte termico con il dettaglio dei materiali componenti e delle conduttività termiche utilizzate nella valutazione della trasmittanza.

Dettaglio dei materiali

	Materiale	λ [W/mK]
1	Intonaco esterno	0,900
2	Cartongesso in lastre	0,210
3	Rockwool Acoustic 225 Plus	0,033
4	Rockwool Acoustic 225 Plus	0,033
5	Cartongesso in lastre	0,210
6	Aria 10 mm (flusso orizzontale)	0,070
7	Rockwool Acoustic 225 Plus	0,033
8	Cartongesso in lastre	0,210
9	Calcestruzzo (2200 kg a m3)	1,650

6.2 CONDIZIONI AL CONTORNO

La valutazione è eseguita nel comune di Concesio - (BS).

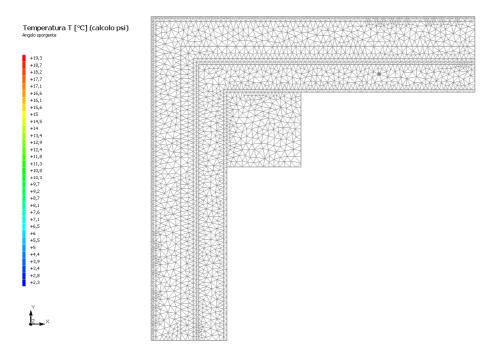
Di seguito il dettaglio delle condizioni al contorno utilizzate per la valutazione della trasmittanza termica lineica.

Nelle condizioni al contorno sono specificati l'ambiente interno e uno o più ambienti esterni con le relative resistenze di calcolo.

Dettaglio dei confini

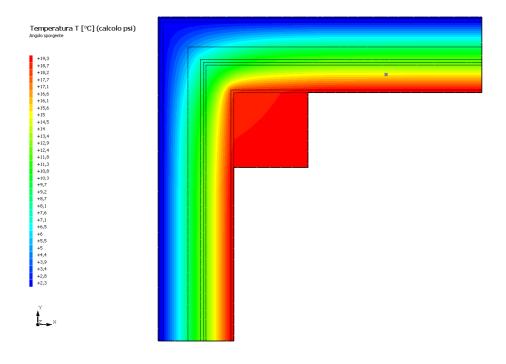
	Confine	T [°C]	R [m ² K/W]
1	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04

2	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
3	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
4	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
5	Interno	20,0	0,13
6	Interno	20,0	0,13


6.3 DISCRETIZZAZIONE DEGLI ELEMENTI

Per portare a convergenza il risultato finale il Ponte termico calcolato è stato suddiviso in triangoli, la mesh di calcolo.

Numero di triangoli utilizzati per la discretizzazione degli elementi


2.470

Di seguito la rappresentazione della mesh di calcolo del ponte termico:

6.4 CURVE DI TEMPERATURA

In base al modello di ponte termico e alle sue condizioni al contorno si ottiene la seguente distribuzione di temperatura all'interno degli elementi:

6.5 RISULTATI DI CALCOLO

Di seguito vengono esposti i risultati di calcolo relativi alla struttura di ponte termico.

Il principale risultato il flusso termico per ogni metro di lunghezza e per ogni grado di differenza di temperatura: la trasmittanza termica lineica del ponte termico viene ottenuta per differenza tra la dispersione del modello geometrico comprensivo di ponte termico e la dispersione in assenza di discontinuità.

Flusso Φ	4,73	W/m
Ψ interno	0,0195	W/mK
Ψ esterno	-0,0559	W/mK
Coefficiente di accoppiamento L2D	0,27	W/mK
Temperatura minima	19,2	°C

6.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA

Il metodo di calcolo della condensa superficiale su superficie interna è contenuto nella norma UNI EN ISO 13788 che prevede il calcolo del fattore di temperatura superficiale fRsi calcolato come segue

$$f_{Rsi} = \frac{\theta si - \theta e}{\theta i - \theta e}$$

Con θ si temperatura superficiale interna [°C]

θe temperatura dell'aria esterna [°C]

θi temperatura dell'aria interna [°C]

La norma precisa che al fine di evitare formazione di muffa, l'umidità superficiale critica da considerare nella valutazione della pressione di saturazione deve essere pari all' 80%.

I dati climatici utilizzati nella verifica sono riferiti al comune di Concesio, BS

Di seguito il dettaglio di pressione e temperatura valutati lungo tutto l'arco dell'anno:

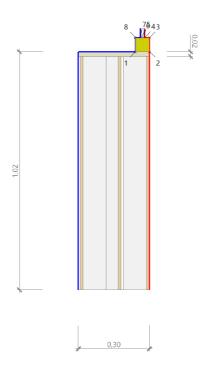
Tipo di calcolo	Classi di concentrazione		
Classe di edificio	Edifici con indice di affollamento non noto		

Mese	Te [°C]	φe [%]	Pe [Pa]	Δр [Ра]	Pi [Pa]	Psi [Pa]	Tsi [°C]	Ti [°C]	fRsi
ottobre	12,30	80,3	1.148,1	373,3	1.521,5	1.901,8	16,71	20,00	0,5732
novembre	7,00	92,5	926,2	561,5	1.487,7	1.859,7	16,36	20,00	0,7201
dicembre	2,80	98,3	734,0	710,6	1.444,6	1.805,8	15,90	20,00	0,7617
gennaio	2,30	93,6	674,5	728,4	1.402,8	1.753,5	15,44	20,00	0,7425
febbraio	2,80	86,2	643,7	710,6	1.354,3	1.692,8	14,89	20,00	0,7031
marzo	7,90	74,6	794,4	529,5	1.324,0	1.655,0	14,54	20,00	0,5491
aprile	11,40	72,1	971,4	405,3	1.376,7	1.720,9	15,15	20,00	0,4360

Te temperatura esterna media mensile [°C] φe umidità relativa esterna [%]
Pe pressione esterna [Pa]
ΔP variazione di pressione [Pa]
Pi pressione interna [Pa]
Psi pressione di saturazione interna [Pa]
Tsi Temperatura superficiale interna [°C]
fRsi Fattore di resistenza superficiale

ESITO DELLA VERIFICA DI ASSENZA DI MUFFA

Fattore di resistenza superficiale nel mese critico fRsi 0,955


Fattore di resistenza superficiale nel mese critico fRsiAmm 0,762

Mese critico Dicembre

ESITO VERIFICA DI CONDENSA SUPERFICIALE frsi>frsi,max: assenza di muffa

7.1 DETTAGLI DEL PONTE TERMICO - Me01a - Parete - davanzale serramento

Si riporta di seguito il modello geometrico di ponte termico con il dettaglio dei materiali componenti e delle conduttività termiche utilizzate nella valutazione della trasmittanza.

Dettaglio dei materiali

	Materiale	λ [W/mK]
1	Intonaco esterno	0,900
2	Cartongesso in lastre	0,210
3	Rockwool Acoustic 225 Plus	0,033
4	Rockwool Acoustic 225 Plus	0,033
5	Cartongesso in lastre	0,210
6	Aria 10 mm (flusso orizzontale)	0,070
7	Rockwool Acoustic 225 Plus	0,033
8	Cartongesso in lastre	0,210
10	Polimetilmetacrilato (PMMA)	0,180
11	Vetro	1,000
12	Argon	0,017
13	Vetro	1,000
9	Cartongesso in lastre	0,210

7.2 CONDIZIONI AL CONTORNO

La valutazione è eseguita nel comune di Concesio - (BS).

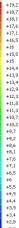
Di seguito il dettaglio delle condizioni al contorno utilizzate per la valutazione della trasmittanza termica lineica.

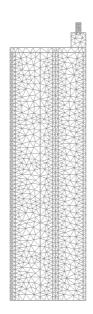
Nelle condizioni al contorno sono specificati l'ambiente interno e uno o più ambienti esterni con le relative resistenze di calcolo.

Dettaglio dei confini

	Confine	T [°C]	R [m ² K/W]
1	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
2	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
3	Temperatura esterna: direzione ascendente del flusso	2,3	0,04
4	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
5	Temperatura esterna: direzione ascendente del flusso	2,3	0,04
6	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
7	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
8	Temperatura interna: direzione discendente del flusso	20,0	0,17
9	Temperatura interna: direzione orizzontale del flusso	20,0	0,13

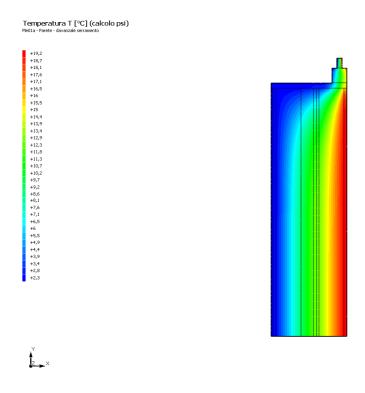
7.3 DISCRETIZZAZIONE DEGLI ELEMENTI


Per portare a convergenza il risultato finale il Ponte termico calcolato è stato suddiviso in triangoli, la mesh di calcolo.


Numero di triangoli utilizzati per la discretizzazione degli elementi

1 214

Di seguito la rappresentazione della mesh di calcolo del ponte termico:



k L×

7.4 CURVE DI TEMPERATURA

In base al modello di ponte termico e alle sue condizioni al contorno si ottiene la seguente distribuzione di temperatura all'interno degli elementi:

7.5 RISULTATI DI CALCOLO

Di seguito vengono esposti i risultati di calcolo relativi alla struttura di ponte termico.

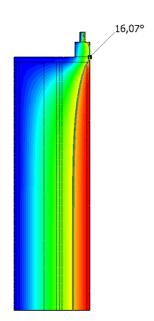
Il principale risultato il flusso termico per ogni metro di lunghezza e per ogni grado di differenza di temperatura: la trasmittanza termica lineica del ponte termico viene ottenuta per differenza tra la dispersione del modello geometrico comprensivo di ponte termico e la dispersione in assenza di discontinuità.

Flusso Φ	7,25	W/m
Ψ interno	0,1639	W/mK
Ψ esterno	0,1639	W/mK
Coefficiente di accoppiamento L2D	0,41	W/mK
Temperatura minima	16,1	°C

7.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA

Il metodo di calcolo della condensa superficiale su superficie interna è contenuto nella norma UNI EN ISO 13788 che prevede il calcolo del fattore di temperatura superficiale fRsi calcolato come segue

$$f_{Rsi} = \frac{\theta si - \theta e}{\theta i - \theta e}$$


Con θsi temperatura superficiale interna [°C]

θe temperatura dell'aria esterna [°C]

θi temperatura dell'aria interna [°C]

Temperatura T [°C] (calcolo psi)

La norma precisa che al fine di evitare formazione di muffa, l'umidità superficiale critica da considerare nella valutazione della pressione di saturazione deve essere pari all' 80%.

I dati climatici utilizzati nella verifica sono riferiti al comune di Concesio, BS

Di seguito il dettaglio di pressione e temperatura valutati lungo tutto l'arco dell'anno:

Tipo di calcolo Classi di concentrazione

Edifici con indice di affollamento non noto Classe di edificio

Mese	Te [°C]	φe [%]	Pe [Pa]	Δр [Ра]	Pi [Pa]	Psi [Pa]	Tsi [°C]	Ti [°C]	fRsi
ottobre	12,30	80,3	1 148,1	373,3	1 521,5	1 901,8	16,71	20,00	0,5732
novembre	7,00	92,5	926,2	561,5	1 487,7	1 859,7	16,36	20,00	0,7201
dicembre	2,80	98,3	734,0	710,6	1 444,6	1 805,8	15,90	20,00	0,7617
gennaio	2,30	93,6	674,5	728,4	1 402,8	1 753,5	15,44	20,00	0,7425
febbraio	2,80	86,2	643,7	710,6	1 354,3	1 692,8	14,89	20,00	0,7031
marzo	7,90	74,6	794,4	529,5	1 324,0	1 655,0	14,54	20,00	0,5491
aprile	11,40	72,1	971,4	405,3	1 376,7	1 720,9	15,15	20,00	0,4360

Te temperatura esterna media mensile [°C] φe umidità relativa esterna [%] Pe pressione esterna [Pa]

ΔP variazione di pressione [Pa]

Pi pressione interna [Pa]

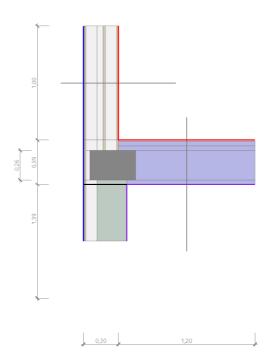
Psi pressione di saturazione interna [Pa]

Tsi Temperatura superficiale interna [°C]

fRsi Fattore di resistenza superficiale

ESITO DELLA VERIFICA DI ASSENZA DI MUFFA

Fattore di resistenza superficiale nel mese critico fRsi 0,778 Fattore di resistenza superficiale nel mese critico fRsiAmm 0,762 Mese critico Dicembre


Relazione di calcolo del ponte termico agli elementi finiti

frsi>frsi,max: assenza di muffa

ESITO VERIFICA D	LCONDFNSA	SUPFRFICIALE
------------------	-----------	--------------

8.1 DETTAGLI DEL PONTE TERMICO - Me01a - Parete - pavimento vs vespaio

Si riporta di seguito il modello geometrico di ponte termico con il dettaglio dei materiali componenti e delle conduttività termiche utilizzate nella valutazione della trasmittanza.

Dettaglio dei materiali

	Materiale	λ [W/mK]
2	Intonaco esterno	0,900
3	Cartongesso in lastre	0,210
4	Rockwool Acoustic 225 Plus	0,033
5	Rockwool Acoustic 225 Plus	0,033
6	Cartongesso in lastre	0,210
7	Aria 10 mm (flusso orizzontale)	0,070
8	Rockwool Acoustic 225 Plus	0,033
9	Cartongesso in lastre	0,210
10	Intonaco esterno	0,900
11	Intonaco esterno	0,900
17	Rockwool Acoustic 225 Plus	0,033
19	Cartongesso in lastre	0,210
21	Aria 10 mm (flusso orizzontale)	0,070
23	Rockwool Acoustic 225 Plus	0,033
25	Cartongesso in lastre	0,210
34	pavimento in PVC $\lambda = 0.19$ - PVC-Belag $\lambda = 0.19$	0,190
35	Massetto autolivellante fermacell	1,100
36	Leca Cls 1600	0,540
37	Calcestruzzo (2200 kg a m3)	1,650

26	Intonaco esterno	0,900
27	Cartongesso in lastre	0,210
1	Calcestruzzo (2200 kg a m3)	1,650
15	Rockwool Acoustic 225 Plus	0,033
13	Cartongesso in lastre	0,210
38	Solaio in laterocemento	0,743
14	Rockwool Acoustic 225 Plus	0,033
39	Calcestruzzo (2200 kg a m3)	1,650
39	Schiuma Poliuretanica	0,028
12	Cartongesso in lastre	0,210
14	Rockwool Acoustic 225 Plus	0,033

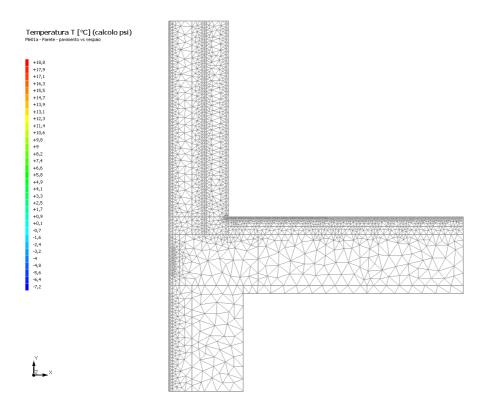
8.2 CONDIZIONI AL CONTORNO

La valutazione è eseguita nel comune di Concesio - (BS).

Di seguito il dettaglio delle condizioni al contorno utilizzate per la valutazione della trasmittanza termica lineica.

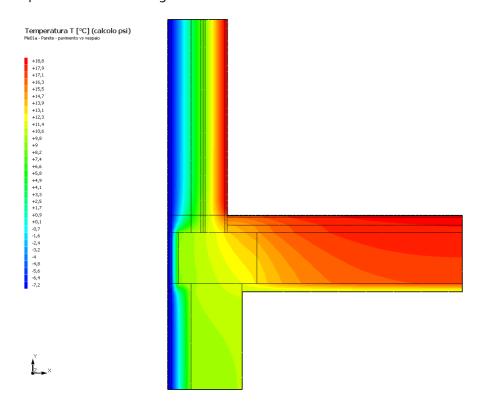
Nelle condizioni al contorno sono specificati l'ambiente interno e uno o più ambienti esterni con le relative resistenze di calcolo.

Dettaglio dei confini


	Confine	T [°C]	R [m ² K/W]
1	Temperatura esterna: direzione orizzontale del flusso	-7,4	0,04
2	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
3	Temperatura interna: direzione discendente del flusso	20,0	0,17
4	Temperatura zona non riscaldata: direzione orizzontale del flusso	11,2	0,13
5	Temperatura interna: direzione ascendente del flusso	11,2	0,10

8.3 DISCRETIZZAZIONE DEGLI ELEMENTI

Per portare a convergenza il risultato finale il Ponte termico calcolato è stato suddiviso in triangoli, la mesh di calcolo.


Numero di triangoli utilizzati per la discretizzazione degli elementi 3 048

Di seguito la rappresentazione della mesh di calcolo del ponte termico:

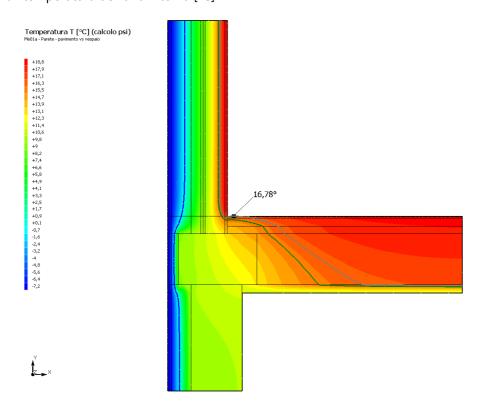
8.4 CURVE DI TEMPERATURA

In base al modello di ponte termico e alle sue condizioni al contorno si ottiene la seguente distribuzione di temperatura all'interno degli elementi:

8.5 RISULTATI DI CALCOLO

Di seguito vengono esposti i risultati di calcolo relativi alla struttura di ponte termico.

Il principale risultato il flusso termico per ogni metro di lunghezza e per ogni grado di differenza di temperatura: la trasmittanza termica lineica del ponte termico viene ottenuta per differenza tra la dispersione del modello geometrico comprensivo di ponte termico e la dispersione in assenza di discontinuità.


Flusso Φ	13,98	W/m
Ψ interno	0,2078	W/mK
Ψ esterno	0,1141	W/mK
Coefficiente di accoppiamento L2D	0,41	W/mK
Temperatura minima	16,8	°C

8.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA

Il metodo di calcolo della condensa superficiale su superficie interna è contenuto nella norma UNI EN ISO 13788 che prevede il calcolo del fattore di temperatura superficiale fRsi calcolato come segue

$$f_{Rsi} = \frac{\theta si - \theta e}{\theta i - \theta e}$$

Con θsi temperatura superficiale interna [°C] θe temperatura dell'aria esterna [°C] θi temperatura dell'aria interna [°C]

La norma precisa che al fine di evitare formazione di muffa, l'umidità superficiale critica da considerare nella valutazione della pressione di saturazione deve essere pari all' 80%.

I dati climatici utilizzati nella verifica sono riferiti al comune di Concesio, BS

Di seguito il dettaglio di pressione e temperatura valutati lungo tutto l'arco dell'anno:

Tipo di calcolo Classi di concentrazione

Classe di edificio

Edifici con indice di affollamento non noto

Contorno interno - esterno

Mese	Te [°C]	φe [%]	Pe [Pa]	Δр [Ра]	Pi [Pa]	Psi [Pa]	Tsi [°C]	Ti [°C]	fRsi
ottobre	12,30	80,3	1 148,1	373,3	1 521,5	1 901,8	16,71	20,00	0,5732
novembre	7,00	92,5	926,2	561,5	1 487,7	1 859,7	16,36	20,00	0,7201
dicembre	2,80	98,3	734,0	710,6	1 444,6	1 805,8	15,90	20,00	0,7617
gennaio	2,30	93,6	674,5	728,4	1 402,8	1 753,5	15,44	20,00	0,7425
febbraio	2,80	86,2	643,7	710,6	1 354,3	1 692,8	14,89	20,00	0,7031
marzo	7,90	74,6	794,4	529,5	1 324,0	1 655,0	14,54	20,00	0,5491
aprile	11,40	72,1	971,4	405,3	1 376,7	1 720,9	15,15	20,00	0,4360

Contorno interno – altro contorno

Mese	Te [°C]	φe [%]	Pe [Pa]	Δр [Ра]	Pi [Pa]	Psi [Pa]	Tsi [°C]	Ti [°C]	fRsi
ottobre	16,15	80,3	1 473,3	236,7	1 710,0	2 137,5	18,57	20,00	0,6277
novembre	13,50	92,5	1 430,6	330,8	1 761,4	2 201,7	19,04	20,00	0,8524
dicembre	11,40	98,3	1 324,4	405,3	1 729,7	2 162,1	18,75	20,00	0,8546
gennaio	11,15	93,6	1 240,3	414,2	1 654,5	2 068,1	18,04	20,00	0,7786
febbraio	11,40	86,2	1 161,4	405,3	1 566,7	1 958,3	17,18	20,00	0,6716
marzo	13,95	74,6	1 188,0	314,8	1 502,8	1 878,5	16,52	20,00	0,4248
aprile	15,70	72,1	1 285,4	252,7	1 538,0	1 922,5	16,88	20,00	0,2755

Te temperatura esterna media mensile [°C] φe umidità relativa esterna [%] Pe pressione esterna [Pa] ΔP variazione di pressione [Pa]

Pi pressione interna [Pa]

Psi pressione di saturazione interna [Pa]

Tsi Temperatura superficiale interna [°C]

Ti Temperatura superficiale interna [°C]

fRsi Fattore di resistenza superficiale

ESITO DELLA VERIFICA DI ASSENZA DI MUFFA

Fattore di resistenza superficiale nel mese critico fRsi

Fattore di resistenza superficiale nel mese critico fRsiAmm

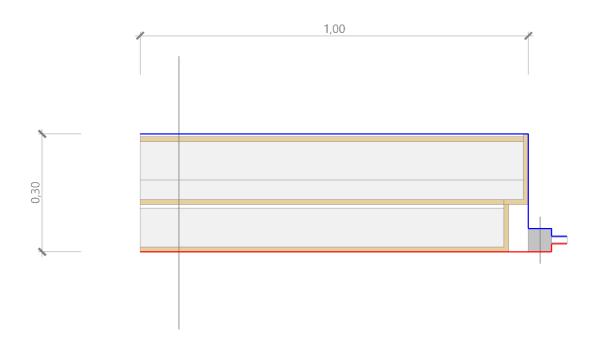
O,855

Mese critico

ESITO VERIFICA DI CONDENSA SUPERFICIALE

O,882

O,855


Dicembre

frsi>frsi,max: ass

Dicembre frsi>frsi,max: assenza di muffa

9.1 DETTAGLI DEL PONTE TERMICO - Me01a - Parete - spallette serramento

Si riporta di seguito il modello geometrico di ponte termico con il dettaglio dei materiali componenti e delle conduttività termiche utilizzate nella valutazione della trasmittanza.

Dettaglio dei materiali

	Materiale	λ [W/mK]
9	Polimetilmetacrilato (PMMA)	0,180
10	Vetro	1,000
11	Argon	0,017
12	Vetro	1,000
1	Intonaco esterno	0,900
2	Cartongesso in lastre	0,210
3	Rockwool Acoustic 225 Plus	0,033
4	Rockwool Acoustic 225 Plus	0,033
6	Aria 10 mm (flusso orizzontale)	0,070
7	Rockwool Acoustic 225 Plus	0,033
8	Cartongesso in lastre	0,210
5	Cartongesso in lastre	0,210
5	Cartongesso in lastre	0,210
14	Polimetilmetacrilato (PMMA)	0,180

9.2 CONDIZIONI AL CONTORNO

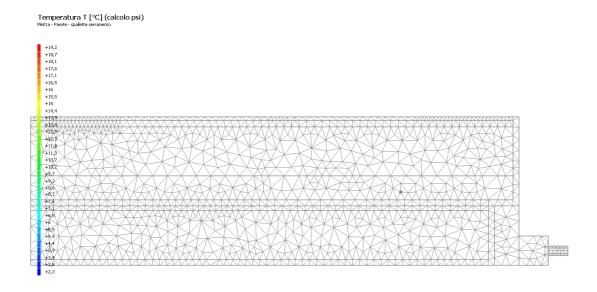
La valutazione è eseguita nel comune di Concesio - (BS).

Di seguito il dettaglio delle condizioni al contorno utilizzate per la valutazione della trasmittanza termica lineica.

Nelle condizioni al contorno sono specificati l'ambiente interno e uno o più ambienti esterni con le relative resistenze di calcolo.

Dettaglio dei confini

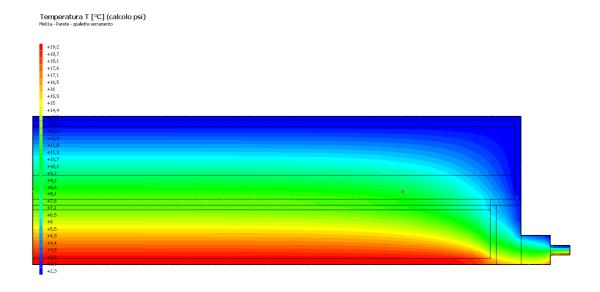
	Confine	T [°C]	R [m ² K/W]
1	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
2	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
3	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
4	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
5	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
6	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
7	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
8	Temperatura interna: direzione orizzontale del flusso	20,0	0,17
9	Temperatura interna: direzione orizzontale del flusso	20,0	0,13


9.3 DISCRETIZZAZIONE DEGLI ELEMENTI

Per portare a convergenza il risultato finale il Ponte termico calcolato è stato suddiviso in triangoli, la mesh di calcolo.

Numero di triangoli utilizzati per la discretizzazione degli elementi

1 187


Di seguito la rappresentazione della mesh di calcolo del ponte termico:

9.4 CURVE DI TEMPERATURA

In base al modello di ponte termico e alle sue condizioni al contorno si ottiene la seguente distribuzione di temperatura all'interno degli elementi:

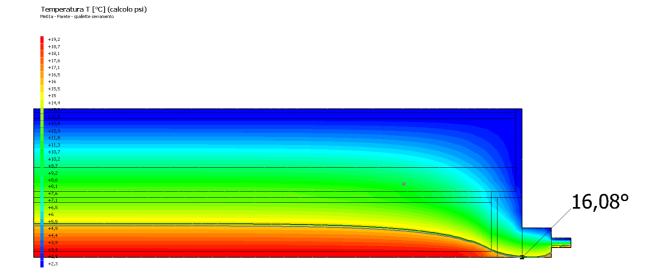
9.5 RISULTATI DI CALCOLO

Di seguito vengono esposti i risultati di calcolo relativi alla struttura di ponte termico.

Il principale risultato il flusso termico per ogni metro di lunghezza e per ogni grado di differenza di temperatura: la trasmittanza termica lineica del ponte termico viene ottenuta per differenza tra la dispersione del modello geometrico comprensivo di ponte termico e la dispersione in assenza di discontinuità.

Flusso Φ	7,85	W/m
Ψ interno	0,2004	W/mK
Ψ esterno	0,2004	W/mK
Coefficiente di accoppiamento L2D	0,44	W/mK
Temperatura minima	16,1	°C

9.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA


Il metodo di calcolo della condensa superficiale su superficie interna è contenuto nella norma UNI EN ISO 13788 che prevede il calcolo del fattore di temperatura superficiale fRsi calcolato come segue

$$f_{Rsi} = \frac{\theta si - \theta e}{\theta i - \theta e}$$

Con θsi temperatura superficiale interna [°C]

θe temperatura dell'aria esterna [°C]

θi temperatura dell'aria interna [°C]

La norma precisa che al fine di evitare formazione di muffa, l'umidità superficiale critica da considerare nella valutazione della pressione di saturazione deve essere pari all' 80%.

I dati climatici utilizzati nella verifica sono riferiti al comune di Concesio, BS

Di seguito il dettaglio di pressione e temperatura valutati lungo tutto l'arco dell'anno:

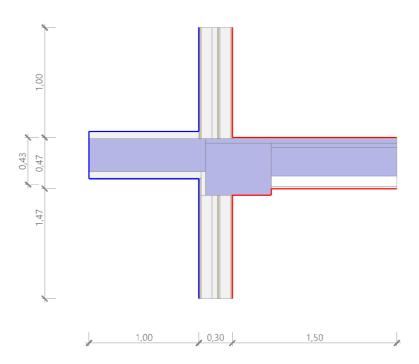
Tipo di calcolo	Classi di concentrazione
Classe di edificio	Edifici con indice di affollamento non noto

Mese	Te [°C]	φe [%]	Pe [Pa]	Δр [Ра]	Pi [Pa]	Psi [Pa]	Tsi [°C]	Ti [°C]	fRsi
ottobre	12,30	80,3	1 148,1	373,3	1 521,5	1 901,8	16,71	20,00	0,5732
novembre	7,00	92,5	926,2	561,5	1 487,7	1 859,7	16,36	20,00	0,7201
dicembre	2,80	98,3	734,0	710,6	1 444,6	1 805,8	15,90	20,00	0,7617
gennaio	2,30	93,6	674,5	728,4	1 402,8	1 753,5	15,44	20,00	0,7425
febbraio	2,80	86,2	643,7	710,6	1 354,3	1 692,8	14,89	20,00	0,7031
marzo	7,90	74,6	794,4	529,5	1 324,0	1 655,0	14,54	20,00	0,5491
aprile	11,40	72,1	971,4	405,3	1 376,7	1 720,9	15,15	20,00	0,4360

Te temperatura esterna media mensile [°C] φe umidità relativa esterna [%]
Pe pressione esterna [Pa]
ΔP variazione di pressione [Pa]
Pi pressione interna [Pa]
Psi pressione di saturazione interna [Pa]
Tsi Temperatura superficiale interna [°C]
fRsi Fattore di resistenza superficiale

ESITO DELLA VERIFICA DI ASSENZA DI MUFFA

Fattore di resistenza superficiale nel mese critico fRsi	0,778
Fattore di resistenza superficiale nel mese critico fRsiAmm	0,762
Mese critico	Dicembre


Relazione di calcolo del ponte termico agli elementi fi	niti

frsi>frsi,max: assenza di muffa

ESITO VERIFICA DI CONDENSA SUPERFICIALI	FSITO	VFRIFICA	DI CON	DFNSA	SUPFRFI	CIALE
---	-------	----------	--------	-------	---------	-------

10.1 DETTAGLI DEL PONTE TERMICO - Me01a - Parete collegamento setti

Si riporta di seguito il modello geometrico di ponte termico con il dettaglio dei materiali componenti e delle conduttività termiche utilizzate nella valutazione della trasmittanza.

Dettaglio dei materiali

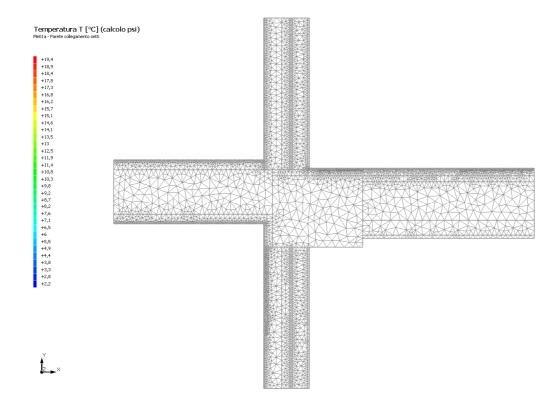
	Materiale	λ [W/mK]
2	Intonaco esterno	0,900
3	Cartongesso in lastre	0,210
4	Rockwool Acoustic 225 Plus	0,033
5	Rockwool Acoustic 225 Plus	0,033
6	Cartongesso in lastre	0,210
7	Aria 10 mm (flusso orizzontale)	0,070
8	Rockwool Acoustic 225 Plus	0,033
9	Cartongesso in lastre	0,210
33	Intonaco plastico per cappotto	0,330
34	Rockwool Acoustic 225 Plus	0,033
35	Calcestruzzo (2200 kg a m3)	1,650
36	Rockwool Acoustic 225 Plus	0,033
37	Intonaco plastico per cappotto	0,330
26	pavimento in PVC λ = 0,19 - PVC-Belag λ = 0,19	0,190
27	Massetto autolivellante fermacell	1,100
28	Leca Cls 1600	0,540
29	Calcestruzzo (2200 kg a m3)	1,650
30	Solaio in laterocemento	0,743
31	Aria 100 mm (flusso verticale ascendente, aperture 500 - 1500 mm2)	1,260

32	Pannello fonoassorbente Rockfon Ekla	0,037
1	Calcestruzzo (2200 kg a m3)	1,650
18	Intonaco esterno	0,900
19	Cartongesso in lastre	0,210
20	Rockwool Acoustic 225 Plus	0,033
21	Rockwool Acoustic 225 Plus	0,033
22	Cartongesso in lastre	0,210
23	Aria 10 mm (flusso orizzontale)	0,070
24	Rockwool Acoustic 225 Plus	0,033
25	Cartongesso in lastre	0,210
36	Abete (flusso parallelo alle fibre)	0,120

10.2 CONDIZIONI AL CONTORNO

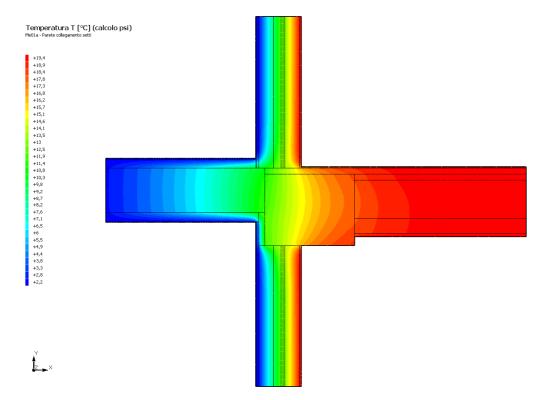
La valutazione è eseguita nel comune di Concesio - (BS).

Di seguito il dettaglio delle condizioni al contorno utilizzate per la valutazione della trasmittanza termica lineica.


Nelle condizioni al contorno sono specificati l'ambiente interno e uno o più ambienti esterni con le relative resistenze di calcolo.

Dettaglio dei confini

	Confine	T [°C]	R [m ² K/W]
1	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
2	Temperatura esterna: direzione ascendente del flusso	2,3	0,04
3	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
4	Temperatura esterna: direzione ascendente del flusso	2,3	0,04
5	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
6	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
7	Temperatura interna: direzione discendente del flusso	20,0	0,17
8	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
9	Temperatura interna: direzione ascendente del flusso	20,0	0,10
10	Interno	20,0	0,13
11	Interno	20,0	0,13


10.3 DISCRETIZZAZIONE DEGLI ELEMENTI

Per portare a convergenza il risultato finale il Ponte termico calcolato è stat calcolo.	o suddiviso in triangoli, la mesh di
Numero di triangoli utilizzati per la discretizzazione degli elementi	5 702
Di seguito la rappresentazione della mesh di calcolo del ponte termico:	

10.4 CURVE DI TEMPERATURA

In base al modello di ponte termico e alle sue condizioni al contorno si ottiene la seguente distribuzione di temperatura all'interno degli elementi:

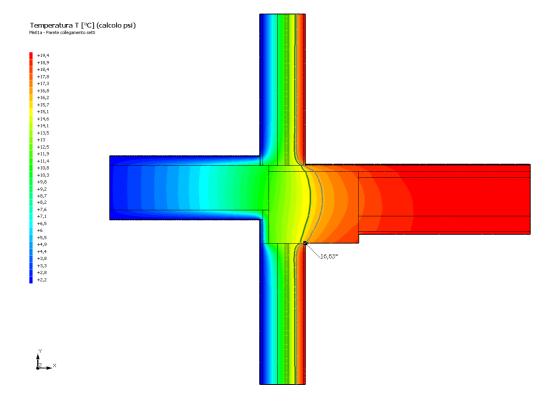
10.5 RISULTATI DI CALCOLO

Di seguito vengono esposti i risultati di calcolo relativi alla struttura di ponte termico.

Il principale risultato il flusso termico per ogni metro di lunghezza e per ogni grado di differenza di temperatura: la trasmittanza termica lineica del ponte termico viene ottenuta per differenza tra la dispersione del modello geometrico comprensivo di ponte termico e la dispersione in assenza di discontinuità.

Flusso Φ	16,32	W/m
Ψ interno	0,6744	W/mK
Ψ esterno	0,6162	W/mK
Coefficiente di accoppiamento L2D	0,92	W/mK
Temperatura minima	16,6	°C

10.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA


Il metodo di calcolo della condensa superficiale su superficie interna è contenuto nella norma UNI EN ISO 13788 che prevede il calcolo del fattore di temperatura superficiale fRsi calcolato come segue

$$f_{Rsi} = \frac{\theta si - \theta e}{\theta i - \theta e}$$

Con θsi temperatura superficiale interna [°C]

θe temperatura dell'aria esterna [°C]

θi temperatura dell'aria interna [°C]

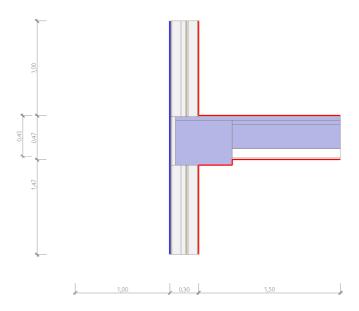
La norma precisa che al fine di evitare formazione di muffa, l'umidità superficiale critica da considerare nella valutazione della pressione di saturazione deve essere pari all' 80%.

I dati climatici utilizzati nella verifica sono riferiti al comune di Concesio, BS

Di seguito il dettaglio di pressione e temperatura valutati lungo tutto l'arco dell'anno:

Tipo di calcolo	Classi di concentrazione
Classe di edificio	Edifici con indice di affollamento non noto

Mese	Te [°C]	φe [%]	Pe [Pa]	Δр [Ра]	Pi [Pa]	Psi [Pa]	Tsi [°C]	Ti [°C]	fRsi
ottobre	12,30	80,3	1 148,1	373,3	1 521,5	1 901,8	16,71	20,00	0,5732
novembre	7,00	92,5	926,2	561,5	1 487,7	1 859,7	16,36	20,00	0,7201
dicembre	2,80	98,3	734,0	710,6	1 444,6	1 805,8	15,90	20,00	0,7617
gennaio	2,30	93,6	674,5	728,4	1 402,8	1 753,5	15,44	20,00	0,7425
febbraio	2,80	86,2	643,7	710,6	1 354,3	1 692,8	14,89	20,00	0,7031
marzo	7,90	74,6	794,4	529,5	1 324,0	1 655,0	14,54	20,00	0,5491
aprile	11,40	72,1	971,4	405,3	1 376,7	1 720,9	15,15	20,00	0,4360


Te temperatura esterna media mensile [°C] φe umidità relativa esterna [%] Pe pressione esterna [Pa] ΔP variazione di pressione [Pa] Pi pressione interna [Pa] Psi pressione di saturazione interna [Pa] Tsi Temperatura superficiale interna [°C] fRsi Fattore di resistenza superficiale

ESITO DELLA VERIFICA DI ASSENZA DI MUFFA

Fattore di resistenza superficiale nel mese critico fRsi	0,809
Fattore di resistenza superficiale nel mese critico fRsiAmm	0,762
Mese critico	Dicembre
ESITO VERIFICA DI CONDENSA SUPERFICIALE	frsi>frsi,max: assenza di muffa

11.1 DETTAGLI DEL PONTE TERMICO - Me01a - Parete solaio

Si riporta di seguito il modello geometrico di ponte termico con il dettaglio dei materiali componenti e delle conduttività termiche utilizzate nella valutazione della trasmittanza.

Dettaglio dei materiali

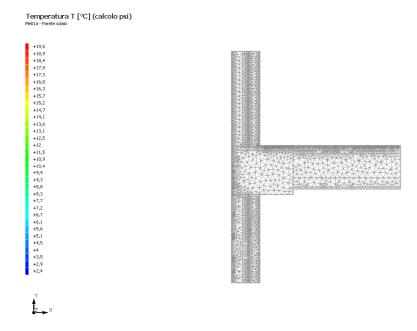
	Materiale	λ [W/mK]
2	Intonaco esterno	0,900
3	Cartongesso in lastre	0,210
4	Rockwool Acoustic 225 Plus	0,033
5	Rockwool Acoustic 225 Plus	0,033
6	Cartongesso in lastre	0,210
7	Aria 10 mm (flusso orizzontale)	0,070
8	Rockwool Acoustic 225 Plus	0,033
9	Cartongesso in lastre	0,210
26	pavimento in PVC λ = 0,19 - PVC-Belag λ = 0,19	0,190
27	Massetto autolivellante fermacell	1,100
28	Leca Cls 1600	0,540
29	Calcestruzzo (2200 kg a m3)	1,650
30	Solaio in laterocemento	0,743
31	Aria 100 mm (flusso verticale ascendente, aperture 500 - 1500 mm2)	1,260
32	Pannello fonoassorbente Rockfon Ekla	0,037
1	Calcestruzzo (2200 kg a m3)	1,650
19	Cartongesso in lastre	0,210
20	Rockwool Acoustic 225 Plus	0,033
21	Rockwool Acoustic 225 Plus	0,033
22	Cartongesso in lastre	0,210
23	Aria 10 mm (flusso orizzontale)	0,070

24	Rockwool Acoustic 225 Plus	0,033
25	Cartongesso in lastre	0,210
36	Abete (flusso parallelo alle fibre)	0,120
18	Intonaco esterno	0,900

11.2 CONDIZIONI AL CONTORNO

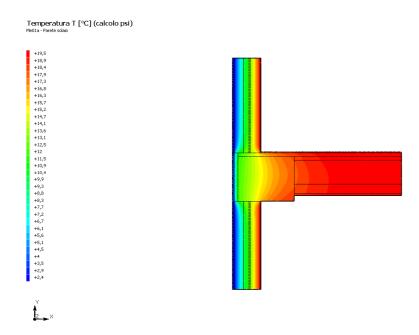
La valutazione è eseguita nel comune di Concesio - (BS).

Di seguito il dettaglio delle condizioni al contorno utilizzate per la valutazione della trasmittanza termica lineica.


Nelle condizioni al contorno sono specificati l'ambiente interno e uno o più ambienti esterni con le relative resistenze di calcolo.

Dettaglio dei confini

	Confine	T [°C]	R [m ² K/W]
1	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
2	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
3	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
4	Temperatura interna: direzione discendente del flusso	20,0	0,17
5	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
6	Temperatura interna: direzione ascendente del flusso	20,0	0,10
7	Interno	20,0	0,13
8	Interno	20,0	0,13


11.3 DISCRETIZZAZIONE DEGLI ELEMENTI

Per portare a convergenza il risultato finale il Ponte termico calcolato è s calcolo.	tato suddiviso in triangoli, la mesh di
Numero di triangoli utilizzati per la discretizzazione degli elementi	4.547
Di seguito la rappresentazione della mesh di calcolo del ponte termico:	

11.4 CURVE DI TEMPERATURA

In base al modello di ponte termico e alle sue condizioni al contorno si ottiene la seguente distribuzione di temperatura all'interno degli elementi:

11.5 RISULTATI DI CALCOLO

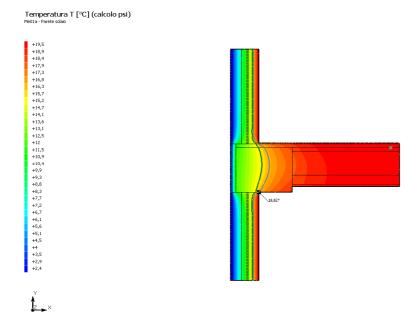
Di seguito vengono esposti i risultati di calcolo relativi alla struttura di ponte termico.

Il principale risultato il flusso termico per ogni metro di lunghezza e per ogni grado di differenza di temperatura: la trasmittanza termica lineica del ponte termico viene ottenuta per differenza tra la dispersione del modello geometrico comprensivo di ponte termico e la dispersione in assenza di discontinuità.

Flusso Φ 16,24 W/m

Ψ interno	0,6700	W/mK
Ψ esterno	0,6117	W/mK
Coefficiente di accoppiamento L2D	0,92	W/mK
Temperatura minima	16,6	°C

11.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA


Il metodo di calcolo della condensa superficiale su superficie interna è contenuto nella norma UNI EN ISO 13788 che prevede il calcolo del fattore di temperatura superficiale fRsi calcolato come segue

$$f_{Rsi} = \frac{\theta si - \theta e}{\theta i - \theta e}$$

Con θsi temperatura superficiale interna [°C]

θe temperatura dell'aria esterna [°C]

θi temperatura dell'aria interna [°C]

La norma precisa che al fine di evitare formazione di muffa, l'umidità superficiale critica da considerare nella valutazione della pressione di saturazione deve essere pari all' 80%.

I dati climatici utilizzati nella verifica sono riferiti al comune di Concesio, BS

Di seguito il dettaglio di pressione e temperatura valutati lungo tutto l'arco dell'anno:

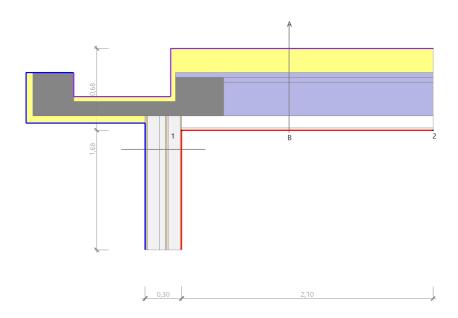
Tipo di calcolo

Classi di concentrazione

Classe di edificio

Edifici con indice di affollamento non noto

Mese	Te [°C]	φe [%]	Pe [Pa]	Δр [Ра]	Pi [Pa]	Psi [Pa]	Tsi [°C]	Ti [°C]	fRsi
ottobre	12,30	80,3	1.148,1	373,3	1.521,5	1.901,8	16,71	20,00	0,5732
novembre	7,00	92,5	926,2	561,5	1.487,7	1.859,7	16,36	20,00	0,7201
dicembre	2,80	98,3	734,0	710,6	1.444,6	1.805,8	15,90	20,00	0,7617
gennaio	2,30	93,6	674,5	728,4	1.402,8	1.753,5	15,44	20,00	0,7425
febbraio	2,80	86,2	643,7	710,6	1.354,3	1.692,8	14,89	20,00	0,7031
marzo	7,90	74,6	794,4	529,5	1.324,0	1.655,0	14,54	20,00	0,5491
aprile	11,40	72,1	971,4	405,3	1.376,7	1.720,9	15,15	20,00	0,4360


Te temperatura esterna media mensile [°C] φe umidità relativa esterna [%]
Pe pressione esterna [Pa]
ΔP variazione di pressione [Pa]
Pi pressione interna [Pa]
Psi pressione di saturazione interna [Pa]
Tsi Temperatura superficiale interna [°C]
fRsi Fattore di resistenza superficiale

ESITO DELLA VERIFICA DI ASSENZA DI MUFFA

Fattore di resistenza superficiale nel mese critico fRsi	0,809
Fattore di resistenza superficiale nel mese critico fRsiAmm	0,762
Mese critico	Dicembre
ESITO VERIFICA DI CONDENSA SUPERFICIALE	frsi>frsi,max: assenza di muffa

12.1 DETTAGLI DEL PONTE TERMICO - SS10P - Parete - solaio vs sottotetto

Si riporta di seguito il modello geometrico di ponte termico con il dettaglio dei materiali componenti e delle conduttività termiche utilizzate nella valutazione della trasmittanza.

Dettaglio dei materiali

	Materiale	λ [W/mK]
3	Intonaco esterno	0,900
5	Cartongesso in lastre	0,210
7	Rockwool Acoustic 225 Plus	0,033
9	Rockwool Acoustic 225 Plus	0,033
11	Cartongesso in lastre	0,210
13	Aria 10 mm (flusso orizzontale)	0,070
15	Rockwool Acoustic 225 Plus	0,033
17	Cartongesso in lastre	0,210
27	NEOPOR EPS - sp.200mm	0,030
26	Calcestruzzo (2200 kg a m3)	1,650
28	Leca Cls 1600	0,540
29	Barriera al vapore	0,400
31	Solaio in laterocemento	0,743
32	Aria 100 mm (flusso verticale ascendente, aperture < 500 mm2)	0,630
33	Controsoffitto fonoassorbente	0,037
25	NEOPOR EPS - sp.200mm	0,030

12.2 CONDIZIONI AL CONTORNO

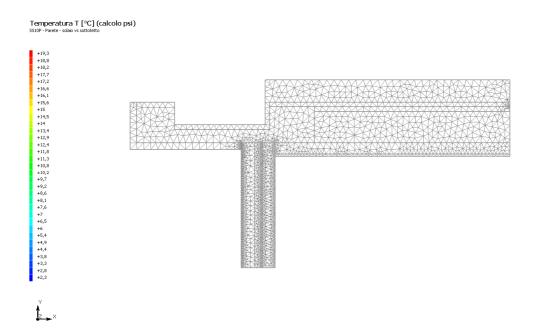
La valutazione è eseguita nel comune di Concesio - (BS).

Di seguito il dettaglio delle condizioni al contorno utilizzate per la valutazione della trasmittanza termica lineica.

Nelle condizioni al contorno sono specificati l'ambiente interno e uno o più ambienti esterni con le relative resistenze di calcolo.

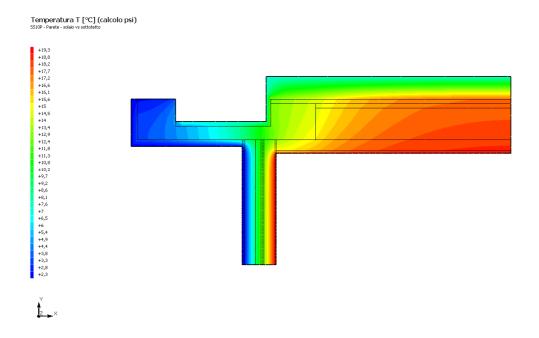
Dettaglio dei confini

	Confine	T [°C]	R [m ² K/W]
1	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
2	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
3	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
4	Temperatura esterna: direzione orizzontale del flusso	2,3	0,04
5	Temperatura esterna: direzione ascendente del flusso	7,6	0,10
6	Temperatura interna: direzione orizzontale del flusso	20,0	0,13
7	Temperatura interna: direzione ascendente del flusso	20,0	0,10
8	Esterno	2,3	0,04
9	Esterno	2,3	0,04
10	Esterno	2,3	0,04
11	Znr	7,6	0,13
12	Znr	7,6	0,10
13	Znr	7,6	0,10


12.3 DISCRETIZZAZIONE DEGLI ELEMENTI

Per portare a convergenza il risultato finale il Ponte termico calcolato è stato suddiviso in triangoli, la mesh di calcolo.

Numero di triangoli utilizzati per la discretizzazione degli elementi


2.136

Di seguito la rappresentazione della mesh di calcolo del ponte termico:

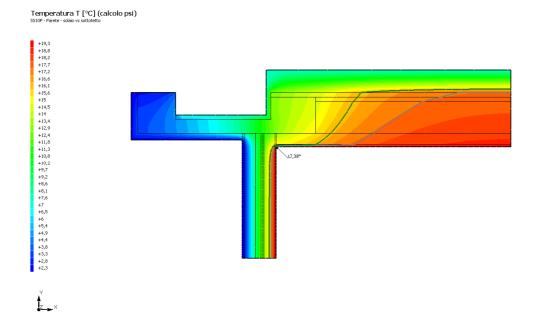
12.4 CURVE DI TEMPERATURA

In base al modello di ponte termico e alle sue condizioni al contorno si ottiene la seguente distribuzione di temperatura all'interno degli elementi:

12.5 RISULTATI DI CALCOLO

Di seguito vengono esposti i risultati di calcolo relativi alla struttura di ponte termico.

Il principale risultato il flusso termico per ogni metro di lunghezza e per ogni grado di differenza di temperatura: la trasmittanza termica lineica del ponte termico viene ottenuta per differenza tra la dispersione del modello geometrico comprensivo di ponte termico e la dispersione in assenza di discontinuità.


Flusso Φ	9,39	W/m
Ψinterno	0,1479	W/mK
Ψ esterno	0,1293	W/mK
Coefficiente di accoppiamento L2D	0,59	W/mK
Temperatura minima	17,4	°C

12.6 VERIFICA DI ASSENZA DI FORMAZIONE DI MUFFA

Il metodo di calcolo della condensa superficiale su superficie interna è contenuto nella norma UNI EN ISO 13788 che prevede il calcolo del fattore di temperatura superficiale fRsi calcolato come segue

$$f_{Rsi} = \frac{\theta si - \theta e}{\theta i - \theta e}$$

Con θsi temperatura superficiale interna [°C] θe temperatura dell'aria esterna [°C] θi temperatura dell'aria interna [°C]

La norma precisa che al fine di evitare formazione di muffa, l'umidità superficiale critica da considerare nella valutazione della pressione di saturazione deve essere pari all' 80%.

I dati climatici utilizzati nella verifica sono riferiti al comune di Concesio, BS

Di seguito il dettaglio di pressione e temperatura valutati lungo tutto l'arco dell'anno:

Tipo di calcolo

Classi di concentrazione

Classe di edificio

Edifici con indice di affollamento non noto

Contorno interno - esterno

Mese	Te [°C]	φe [%]	Pe [Pa]	Δр [Ра]	Pi [Pa]	Psi [Pa]	Tsi [°C]	Ti [°C]	fRsi
ottobre	12,30	80,3	1.148,1	373,3	1.521,5	1.901,8	16,71	20,00	0,5732
novembre	7,00	92,5	926,2	561,5	1.487,7	1.859,7	16,36	20,00	0,7201
dicembre	2,80	98,3	734,0	710,6	1.444,6	1.805,8	15,90	20,00	0,7617
gennaio	2,30	93,6	674,5	728,4	1.402,8	1.753,5	15,44	20,00	0,7425
febbraio	2,80	86,2	643,7	710,6	1.354,3	1.692,8	14,89	20,00	0,7031
marzo	7,90	74,6	794,4	529,5	1.324,0	1.655,0	14,54	20,00	0,5491
aprile	11,40	72,1	971,4	405,3	1.376,7	1.720,9	15,15	20,00	0,4360

Contorno interno – altro contorno

Mese	Te [°C]	φe [%]	Pe [Pa]	Δp [Pa]	Pi [Pa]	Psi [Pa]	Tsi [°C]	Ti [°C]	fRsi
ottobre	14,61	80,3	1.334,7	291,3	1.626,0	2.032,5	17,76	20,00	0,5853
novembre	10,90	92,5	1.205,6	423,1	1.628,6	2.035,8	17,79	20,00	0,7572
dicembre	7,96	98,3	1.051,1	527,4	1.578,5	1.973,2	17,30	20,00	0,7753
gennaio	7,61	93,6	977,2	539,8	1.517,1	1.896,4	16,67	20,00	0,7311
febbraio	7,96	86,2	921,7	527,4	1.449,1	1.811,4	15,95	20,00	0,6636
marzo	11,53	74,6	1.013,8	400,7	1.414,5	1.768,1	15,57	20,00	0,4771
aprile	13,98	72,1	1.150,5	313,7	1.464,2	1.830,2	16,11	20,00	0,3540

Te temperatura esterna media mensile [°C] φe umidità relativa esterna [%] Pe pressione esterna [Pa] ΔP variazione di pressione [Pa] Pi pressione interna [Pa]

Psi pressione di saturazione interna [Pa] Tsi Temperatura superficiale interna [°C] Ti Temperatura superficiale interna [°C] fRsi Fattore di resistenza superficiale

ESITO DELLA VERIFICA DI ASSENZA DI MUFFA

Fattore di resistenza superficiale nel mese critico fRsi	0,852
Fattore di resistenza superficiale nel mese critico fRsiAmm	0,775
Mese critico	Dicembre
ESITO VERIFICA DI CONDENSA SUPERFICIALE	frsi>frsi,max: assenza di muffa