PROGETTO IMPIANTO ELETTRICO CON SISTEMA FOTOVOLTAICO

CEI 64-8 CEI EN 61936-1 CEI EN 50522 D.M. 37/08

Committente:

C.L.A.S. S.R.L. CORSO ITALIA, 27 39100 BOLZANO (BZ)

Progetto:

REALIZZAZIONE NUOVO IMPIANTO FOTOVOLTAICO A TERRA, SITO IN COMUNE DI PALOSCO (BG), FG. 9 P.LLA 1106

Data elaborazione: 07/07/2025

Progettista:

Per. Ind. Diego Grigolato

DESRIZIONE GENERALE IMPIANTO:

☐ Adeguamento

Parallelo con la rete: Media Tensione – MT

☐ Bassa Tensione – BT

Definizioni e terminologia

•	Impianto fotovoltaico:	è un sistema di produzione di energia elettrica r	mediante conversione diretta della luce,
---	------------------------	---	--

cioè della radiazione solare, in energia elettrica (effetto fotovoltaico); pertanto, esso rientra nella categoria degli impianti alimentati da fonti rinnovabili non programmabili (cioè la cui produzione di energia elettrica risulta aleatoria d in funzione del regime meteorologico istantaneo. L'impianto è schematicamente costituito dal campo fotovoltaico, dal gruppo di conversione c.c./c.a. e dal sistema di interfacciamento alla

rete elettrica di distribuzione;

Cella fotovoltaica: dispositivo semiconduttore che genera energia elettrica quando è esposto alla luce

solare:

Modulo fotovoltaico: assieme di celle fotovoltaiche elettricamente collegate per raggiungere la tensione, la

corrente e la potenza desiderata; queste sono assemblate in un idoneo supporto atto a proteggerle dagli agenti atmosferici, anteriormente tramite vetro e posteriormente con vetro e/o materiale plastico. Il bordo esterno è protetto da una cornice di alluminio

anodizzato;

Stringa fotovoltaica: insieme di moduli fotovoltaici collegati in serie per raggiungere la tensione e la potenza

desiderata. La tensione di lavoro dell'impianto è quella determinata dal carico elettrico

"equivalente" visto ai morsetti della stringa;

■ Generatore FV: insieme di stringhe fotovoltaiche collegate in parallelo per raggiungere la potenza

desiderata;

Inverter: convertitore statico in cui viene effettuata la conversione dell'energia elettrica da

continua ad alternata, tramite un ponte semiconduttore e opportune apparecchiature di

controllo che permettono di ottimizzare il rendimento del campo fotovoltaico;

Interfaccia rete: dispositivo che provvede all'interfacciamento dell'impianto fotovoltaico all'impianto

elettrico dell'utilizzatore e, quindi, alla rete elettrica locale;

Gestore della rete:
 è il soggetto che presta il servizio di distribuzione e vendita dell'energia elettrica ai clienti

utilizzatori;

Potenza massima o di picco Wp: potenza generata da un dispositivo fotovoltaico (modulo, stringa o generatore) in

condizioni di prova definite "standard" (abbr. STC) che risultano le seguenti: Air Mass = 1.5, irraggiamento solare sul piano dei moduli pari a $1~kW/m^2$, temperatura di lavoro della

cella fotovoltaica pari a 25°C;

Tensione a vuoto Voc: tensione generata ai morsetti a circuito aperto, ad una particolare temperatura e

radiazione solare;

Tensione alla massima potenza Vmpp: tensione massima generata ad una particolare temperatura e radiazione

solare;

Corrente di corto circuito Isc: corrente erogata in condizioni di corto circuito, ad una particolare temperatura e

radiazione solare;

Corrente alla massima potenza Impp: corrente massima generata ad una particolare temperatura e radiazione

solare:

Angolo di azimut: angolo formato dalla normale alla superficie e dal piano meridiano del luogo, positivo da

Sud verso Ovest

Angolo di tilt: angolo che la superficie forma con l'orizzonte, positivo dal piano orizzontale verso l'alto

1 SCOPO E OGGETTO

1.1 Premessa

La presente relazione riguarda la descrizione tecnica e le specifiche realizzative di un impianto fotovoltaico da realizzarsi a terra nel comune di Palosco BG.

1.2 Oggetto e documentazione di progetto

Il presente documento ha lo scopo di fornire una descrizione tecnica del progetto relativo all'impianto di generazione elettrica basato sull'utilizzo della fonte rinnovabile solare.

L'intervento in oggetto prevede la realizzazione di una centrale fotovoltaica con una potenza di **743,04 kWp**, connessa alla rete elettrica di media tensione nel comune di Palosco BG.

L'impianto sarà costituito da un campo fotovoltaico composto da 1032 moduli in silicio monocristallino, con una superficie totale dei moduli di circa 3.206 m².

Il sistema di conversione, idoneo per l'installazione all'aperto, sarà costituito da un sistema da 6 inverter di stringa. Ogni inverter sarà dotato di sezionatore lato CA, scaricatori interni di tensione lato CA, sezionatore lato CC e scaricatori interni di tensione lato CC. Gli inverter saranno interconnessi tramite una rete dati che ne consentirà il monitoraggio da remoto.

Il sistema di produzione sarà collegato alla cabina di trasformazione, che sarà costituirà da un fabbricato esistente.

Il Modulo M.T. sarà dotato di protezioni generali e di interfaccia conformi alla norma CEI 0-16. Il di trasformazione ospiterà 1 trasformatore MT/BT da 1.000 kVA

L'impianto sarà inoltre dotato di un sistema di messa a terra conforme alla normativa vigente. L'applicazione della tecnologia fotovoltaica consente:

- la produzione di energia elettrica senza emissioni di CO2;
- il risparmio di combustibili fossili;
- l'assenza di inquinamento acustico;
- la realizzazione di un sistema compatibile con le esigenze di tutela del territorio;
- la promozione di progetti finalizzati al rispetto ambientale

L'impianto sarà connesso ad un nuovo Punto di Fornitura (POD)

La redazione della documentazione di progetto è stata svolta nel rispetto delle indicazioni di compilazione della Guida CEI 0-2 e s.m.i.

1.3 Motivazioni delle scelte progettuali

L'impianto fotovoltaico realizzato è finalizzato alla produzione di energia elettrica "verde", "pulita" e rispettosa dell'ambiente:

- la fonte energetica sfruttata è l'irraggiamento solare, sorgente inesauribile, gratuita e ovunque disponibile, priva di qualsiasi controindicazione o competizione d'uso;
- la tecnologia di conversione fotovoltaica ha, in tutta la sua lunga fase di esercizio (durata maggiore di 25 anni), emissioni nulle di rumore e di inquinanti gassosi in genere (in particolare di CO2) e quindi non pregiudica l'ambiente e la salute;
- l'impianto, immettendo l'elettricità prodotta nella rete di distribuzione, contribuisce al soddisfacimento dei fabbisogni energetici nazionali mediante lo sfruttamento di una risorsa naturale e rinnovabile, concorrendo alla riduzione dell'uso di fonti fossili, alla riduzione delle emissioni di gas serra nonché alla sicurezza del fabbisogno energetico nazionale;
- L'installazione degli inverter di stringa è determinata dalle seguenti motivazioni:

- 1) posizionamento degli stessi in nel campo dove sono vicini alle loro stringhe con diminuzione della lunghezza delle stringhe di consequenza minore caduta di tensione;
- 2) minori consumi di energia perché non è necessario installare sistemi di raffreddamento come per le mono macchine, perché il raffreddamento degli inverter di stringa avviene naturalmente.

L'area scelta per l'ubicazione della centrale fotovoltaica risulta la più idonea per:

- non pregiudicare le attività umane e naturali esistenti e in corso di sviluppo sul territorio circostante;
- ottenere le migliori condizioni in termini di irraggiamento solare e funzionalità.

1.4 Requisiti di rispondenza a norme, leggi, regolamenti

Nella presente relazione si sottolinea come le sezioni elettriche dell'impianto fotovoltaico sono state realizzate alla regola d'arte, come prescritto dalla Legge n. 186 del 1° marzo 1968 e ripreso dal D.M. 37/08. Inoltre l'impianto fotovoltaico come realizzato, segue quanto prescritto dal DLgs.81/08 "Norme per la prevenzione degli infortuni sul lavoro" con relativi aggiornamenti e circolari di riferimento.

Le caratteristiche degli impianti, nonché dei loro componenti, sono in accordo con le norme di legge e di regolamento vigenti ed in particolare sono conformi:

- alle prescrizioni e indicazioni tecniche del gestore della rete di energia elettrica locale;
- alle norme CEI (Comitato Elettrotecnico Italiano).

2 DATI DI PROGETTO

2.1 Ubicazione

La centrale fotovoltaica oggetto di tale relazione, collocata nel Comune di Palosco BG presso terreno contraddistinto al foglio 9 - Particella 1106.

L'impianto ha lo scopo di produrre energia elettrica in collegamento alla rete di distribuzione di media tensione in corrente alternata trifase.

2.2 Vie di comunicazione

L'area dove è ubicato l'impianto è accessibile mediante strade esistenti.

2.3 Caratteristiche urbanistiche e di destinazione del sito

La destinazione urbanistica del terreno dove sarà realizzato l'intervento è stata desunta dai vigenti strumenti di gestione territoriale del Comune di Palosco BG.

All'interno dell'area dell'impianto non esistono volumi tecnici sotto il terreno (tubazioni acqua, gas, fognature).

2.4 Dati catastali

Foglio 9 - Particelle 1106

2.5 Dati di rilievo clinometrico e valutazione energetica

Nel punto di installazione del generatore fotovoltaico non saranno presenti elementi che potrebbero dar luogo a fenomeni di ombreggiamento significativi.

La tecnologia fotovoltaica è inoltre caratterizzata dalla estrema semplicità e ridotta necessità di operazioni di manutenzione e di consumo di materiali, essendo i moduli fotovoltaici costruiti e assemblati in unico pezzo.

Dal punto di vista ambientale, l'installazione dell'impianto fotovoltaico permetterà di azzerare l'emissione di anidride carbonica per una quantità equivalente di energia prodotta da combustibili fossili. Dal calcolo di produttività presunto, si può stimare il quantitativo di emissioni CO₂ evitate che è pari a circa 227 t/anno (0,273 kg di CO2 evitata per ogni kWh prodotto).

Considerando una vita media dell'impianto pari a 30 anni, si può stimare che saranno evitate circa 6.810 t di CO2.

2.6 Dimensionamento dei componenti principali

Con i dati di progetto precedentemente illustrati sono stati calcolati e dimensionati i principali componenti dell'impianto.

Il metodo di dimensionamento seguito si è svolto secondo i seguenti passi:

- a) Valutazione dell'area disponibile in sagoma e superficie;
- b) Valutazione delle caratteristiche morfologiche dell'area:
- c) Ottimizzazione di un disegno di strutture di sostegno dei moduli fotovoltaici;
- d) Applicazione sul terreno delle file di moduli fotovoltaici;
- e) Predisposizione degli spazi adeguati fra filari
- f) Posizionamento della cabina generale contenente le apparecchiature elettriche principali

Caratteristiche generali	Localizzazione:Tipologia di posa:Tipologia d'impiantoRete di collegamento	Palosco BG Struttura metallica infissa nel terreno Struttura fissa non ad inseguimento Media tensione (15 kV)
Moduli fotovoltaici	 Marca e modello Tecnologia: Potenza nominale, Pn: Tensione MPP, Vm Corrente MPP, Im Tensione a vuoto, Voc Corrente in cto-cto, Isc Certificazione 	JINKO 66HL5-BDV Monocristallino 720 Wp (*) 40.89 V 17.61 A 49.04 V 18.67 A IEC 61215 / IEC 61730
Strutture di sostegno	Materiale:Tipologia:	Metallo Profilati
Inverter	 Marca e modello Potenza nominale: Tensione nom. d'ingresso: Range di MPPT: Tensione d'uscita: 	SMA STP 110-60 CORE 2 110 kW 585 V 500-800 V 400 V
Trasformazione BT/MT	Numero macchinePotenza macchinaTensione nominale	1 1000 kVA 15 kV
Corrente di corto circuito	Corrente di corto circuito dell'impianto nel punto di connessione	33 kA
Supervisione esercizio	Controllo:Acquisizione dati:	Locale e da remoto via modem Data logger dati elettrici e meteo

^(*) Caratteristiche a STC (AM 1.5, Irraggiamento sul piano dei moduli = 1000 W/m², temperatura di cella fotovoltaica = 25°C)

3 PRESCRIZIONI SUI COMPONENTI E SULLE LAVORAZIONI

3.1 Elenco dei materiali impiegati

- 1. n. 1032 moduli fotovoltaici
- 2. Struttura metallica fissata nel terreno;
- 3. n.6 Inverter:
- 4. n.1 Trasformatore M.T/B.T;
- 5. Cavo Solare H1Z2Z2-K (1500Vcc) 2x6 mm² per connessione tra moduli e inverter; cavo elettrico ARG16R per connessioni AC in BT; bandella in acciaio zincato da 30x3 mm per il collegamento equipotenziale dell'impianto fotovoltaico;
- 6. n.1 quadro elettrico fotovoltaico
- 7. n.1 quadro di consegna trifase per B.T. completo di dispositivi di protezione di interfaccia e generale;
- 8. Bullonerie e materiali di montaggio precablati.

Consultare lo schema elettrico unifilare per avere una visione completa e dettagliata dei collegamenti elettrici.

3.2 Prove di accettazione in officina

Tutte le apparecchiature elettriche sono state sottoposte a prove e collaudi in officina previsti dai Piani di Qualità dei Costruttori e delle prescrizioni tecniche contenute nel progetto definitivo. In particolare, sono effettuate prove di accettazione in officina per i moduli fotovoltaici secondo un Piano di Campionamento a norma ISO ed una specifica di collaudo appositamente redatta. Le prove di accettazione che costituiscono pregiudiziale sul proseguimento delle lavorazioni di realizzazione hanno avuto esito positivo.

3.3 Prove di accettazione in campo, messa in servizio e test-run

L'accettazione dell'impianto e l'aggiornamento dei progetti come "As-built" verranno effettuati solo dopo i seguenti controlli:

- rispondenza dei collegamenti con quanto riportato nei documenti progettuali;
- accertamento della presenza di eventuali danneggiamenti dovuti al trasporto:
- realizzazione dell'impianto a "perfetta regola d'arte";
- il corretto montaggio delle strutture;
- la corretta esecuzione dei cablaggi in congruenza con quanto riportato nel progetto;
- la messa a terra delle masse;
- il corretto montaggio delle strutture.

3.4 Prescrizioni sulle prestazioni d'impianto

Secondo quanto è previsto dal decreto, le prescrizioni sulle prestazioni d'impianto hanno seguito le seguenti specifiche:

□ Verifica della condizione: **Pcc > 0,85 Pnom * I** / I_{STC} , con condizioni di irraggiamento > 600 W/m² ove:

Pcc = è la potenza (in kW) misurata all'uscita del generatore fotovoltaico, con precisione migliore del ± 2%.

Pnom = è la potenza nominale (in kW) del generatore fotovoltaico;

I = è l'irraggiamento (in W/m²) misurato sul piano dei moduli, con precisione migliore del ± 3%;

I_{STC} = pari a 1000 W/m², è l'irraggiamento in condizioni standard.

verifica della condizione: **Pca > 0,9 Pcc**, con potenza erogata > 90% della p totale, ove:

Pca = è la potenza attiva (in kW) misurata all'uscita del gruppo di conversione, con precisione migliore del ± 2%.

3.5 Dismissione

L'impianto sarà dismesso quando cesserà di funzionare, almeno dopo il periodo di vita utile dei suoi componenti principali. Nel caso in oggetto la vita utile è stimata in circa 30 anni.

È dimostrato che il ciclo di vita utile tecnico-economica di un impianto fotovoltaico si esaurisce in circa 30 anni, sia per il logorio tecnico e strutturale dell'impianto, sia per il naturale progresso tecnologico che consentirà l'utilizzo di altri sistemi di produzione di energia alternativa.

Il ripristino dei luoghi sarà possibile soprattutto grazie alle caratteristiche di reversibilità proprie degli impianti fotovoltaici ed al loro basso impatto sul territorio, anche in relazione alle scelte tecniche operate in fase di progettazione (utilizzo di sistemi di ingegneria naturalistica per rinterri, assenza di opere perenni in conglomerato cementizio.

È da sottolineare inoltre che buona parte dei materiali utilizzati per la realizzazione degli impianti può essere riciclata. Sarà, comunque, necessario l'allestimento di un cantiere al fine di permettere lo smontaggio, il deposito temporaneo ed il successivo trasporto a recupero e, ove necessario, a discarica degli elementi che costituiscono l'impianto.

Le fasi principali del piano di dismissione sono riassumibili in:

- sezionamento impianto lato DC e lato AC
- scollegamento moduli fotovoltaici
- scollegamento cavi lato DC e lato AC
- smontaggio moduli e impacchettamento
- smontaggio videosorveglianza
- rimozione cavi
- rimozione parti elettriche dai prefabbricati per alloggiamento inverter
- smontaggio struttura metallica
- rimozione parti elettriche
- rimozione manufatti
- consegna materiali a ditte specializzate

3.6 Normativa di riferimento (principali per progettazione e realizzazione)

NORMA	ANNO	DESCRIZIONE
CEI 0-2	2002	Guida per la definizione della documentazione di progetto degli impianti elettrici.
CEI 0-16 (04 2019)	2019	Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti AT ed MT delle imprese distributrici di energia elettrica
CEI 11-16 EN 60900	2005	Lavori sotto tensione – Attrezzi di lavoro a mano per tensioni fino a 1000 V in corrente alternata e 1500 V in corrente continua.
CEI 11-20	2000	Impianti di produzione di energia elettrica e gruppi di continuità collegati a reti di I e II categoria.
CEI 11-27	2005	Lavori su impianti elettrici.
CEI 11-31 EN 60903	2005	Lavori sotto tensione – Guanti di materiali isolante.
CEI 11-48 EN 60947	2005	Esercizio degli impianti elettrici.
CEI 13-4	2005	Sistemi di misura dell'energia elettrica –Composizione, precisione e verifica.
CEI 17-5 EN 60947-2	2007	Apparecchiature a bassa tensione – Parte 2: Interruttori automatici.
CEI 17-11 EN 60947-3	2010	Apparecchiatura a bassa tensione – Parte 3: Interruttori di manovra, sezionatori, interruttori di manovra-sezionatori e unità combinate con fusibili.
CEI 20-40	1998	Guida per l'uso di cavi armonizzati a bassa tensione.
CEI 20-45	2003	Cavi isolati con mescola elastomerica, resistenti al fuoco, non propaganti l'incendio, senza alogeni (LSOH) con tensione nominale Uo/U di 0,6/1 kV.
CEI 20-67	2001	Guida per l'uso dei cavi 0,6/1kV.
CEI 20-91	2010	Cavi elettrici con isolamento a guaina elastomerici senza alogeni non propaganti la fiamma per applicazioni in impianti fotovoltaici.
CEI 23-3/1 EN 60898-1	2004	Interruttori automatici per la protezione dalle sovracorrenti per impianti domestici e similari – Parte 1: Interruttori automatici per funzionamento in corrente alternata.
CEI 23-12/1 EN 60309-1	2000	Spine e prese per uso industriale – Parte 1: Prescrizioni generali
CEI 23-80 EN 61386-1	2009	Sistemi di tubi e accessori per installazioni elettriche – Parte 1: Prescrizioni generali.
CEI 31-33 EN 60079-14	2010	Atmosfere esplosive – parte 14: Progettazione, scelta e installazione degli impianti elettrici.
CEI 31-67 EN 61241-14	2006	Costruzioni elettriche destinate ad essere utilizzate in presenza di polveri combustibili – Parte 14: Scelta ed installazione.
CEI 32-1 EN 60269-1	2009	Fusibili a bassa tensione – Parte 1: Prescrizioni generali.
CEI 64-8 IX Edizione	2024	Impianti elettrici utilizzatori a tensione nominale non superiore a 1000 V in corrente alternata e a 1500 V in corrente continua. Parte 1: Oggetto, scopo e principi fondamentali; Parte 2: Definizioni; Parte 3: Caratteristiche generali; Parte 4: Prescrizioni per la sicurezza; Parte 5: Scelta ed installazione dei componenti elettrici;
		Parte 6: Verifiche;

	Parte 7: Ambienti e applicazioni particolari		
CEI 81-10 EN 62305	2006	Protezione contro i fulmini. Parte 1: Principi generali. Parte 2: Valutazione del rischio. Parte 3: Danno materiale alle strutture e pericolo per le persone. Parte 4: Impianti elettrici ed elettronici nelle strutture.	
CEI 82-1 EN 60904-1	2008	Dispositivi fotovoltaici Parte 1: Misura delle caratteristiche fotovoltaiche corrente - tensione	
CEI 82-3 EN 60904-3	2009	Dispositivi fotovoltaici Parte 3: Principi di misura per dispositivi solari fotovoltaici (FV) per uso terrestre, con spettro solare di riferimento.	
CEI 82-8 EN 61215	2006	Moduli fotovoltaici (FV) in silicio cristallino per applicazioni terrestri - qualificazione del progetto e omologazione del tipo.	
CEI 82-12 EN 61646	2010	Moduli fotovoltaici (FV) in silicio cristallino per applicazioni terrestri - qualificazione del progetto e approvazione del tipo.	
CEI 82-15 EN 61724	1999	Rilievo delle prestazioni dei sistemi fotovoltaici. Linee guida per la misura, lo scambio e l'analisi dei dati.	
CEI 82-22 EN 50380	2003	Fogli informativi e dati di targa per moduli fotovoltaici.	
CEI 82-25	2010	Guida alla realizzazione di sistemi di generazione fotovoltaica collegati alle reti elettriche di Media e Bassa Tensione.	
CEI 82-27 EN 61730-1	2008	Qualificazione per la sicurezza dei moduli fotovoltaici (FV) – Parte 1: Prescrizioni per la costruzione.	
CEI 82-28 EN 61730-2	2009	Qualificazione per la sicurezza dei moduli fotovoltaici (FV) – Parte 1: Prescrizioni per le prove.	
CEI 82-30 EN 62108	2008	Moduli e sistemi fotovoltaici a concentrazione (CPV) – Qualifica di progetto e approvazione di tipo.	
CEI 82-31 EN 50521	2009	Connettori per sistemi fotovoltaici. Prescrizioni di sicurezza e prove.	
CEI 82-34 EN 50524	2010	Fogli informativi e dati di targa dei convertitori fotovoltaici.	
CEI EN 61727	2009	Sistemi fotovoltaici (FV) - Caratteristiche dell'interfaccia di raccordo con la rete;	
CEI EN 61000-3-2	2005	Compatibilità elettromagnetica (EMC) - Parte 3: Limiti Sezione 2:Limiti per le emissioni di corrente armonica (apparecchiature con corrente di ingresso =16 A per fase);	
CEI EN 60555-1	1982	Disturbi nelle reti di alimentazione prodotti da apparecchi elettrodomestici e da equipaggiamenti elettrici simili- Parte 1: Definizioni;	
CEI EN 60439 1-2-3	2005	Apparecchiature assiemate di protezione e manovra per bassa tensione;	
CEI EN 60529	1997	Gradi di protezione degli involucri (codice IP); Valori medi del numero dei fulmini a terra per anno e per chilometro	
CEI 81-3	2008	quadrato dei Comuni d'Italia;	
CEI EN 60445	2007	Individuazione dei morsetti e degli apparecchi e delle estremità dei conduttori designati e regole generali per un sistema alfanumerico.	
CEI UNEL 00721	2004	Colori di guaina dei cavi elettrici.	
CEI UNEL 00722	2002	Identificazione delle anime dei cavi.	
CEI UNEL 35024/1 1997 tensioni nominali non superiori a 1000 V in c V in corrente continua. Portate di corrente in		Cavi elettrici isolati con materiale elastomerico o termoplastico per tensioni nominali non superiori a 1000 V in corrente alternata e 1500 V in corrente continua. Portate di corrente in regime permanente per posa in aria.	
CEI UNEL 35026	2000	Cavi elettrici isolati con materiale elastomerico o termoplastico per	

		tensioni nominali non superiori a 1000 V in corrente alternata e 1500 V in corrente continua. Portate di corrente in regime permanente per posa interrata.
UNI 8627	1984	Edilizia. Sistemi di copertura. Definizioni e classificazioni degli schemi funzionali, soluzioni conformi e soluzioni tecnologiche.
UNI 10349	1994	Riscaldamento e raffrescamento degli edifici. Dati climatici
prEN 62109-1	2010	Safety of power converters for use in photovoltaic power systems- Part 1: General requirements.
IEC TS 62257-7-1	Recommendations for small renewable energy and hybrid system for rural electrification – Part 7-1: Generators- Photovoltaic arrays	
IEC 62423	2009	Type F type B residual current operated circuit-breakers whit an without integral overcurrent protection for household and similar uses.
IEC 60364-7-712	2002	Electrical installations of buildings - Part 7-712: Requirements for special installations or locations Solar photovoltaic (PV) power supply systems.
CEI 0-21 (04-2019)	2019	Regola tecnica di riferimento per la connessione di Utenti attivi e passivi alle reti BT delle imprese distributrici di energia elettrica

DISPOSIZIONI LEGISLATIVE E REGOLAMENTARI

RIFERIMENTO	DESCRIZIONE	
Legge 1/3/68 n.186 G.U. 23/3/68 n.77	Disposizioni concernenti la produzione di materiali, apparecchiature, macchinari, installazioni ed impianti elettrici ed elettronici.	
Legge 18/10/77 n.791 G.U.2/11/77 n.298 G.U.9/11/77 n.305	Attuazione della direttiva CEE 72/23 relative alle garanzie di sicurezza che deve possedere il materiale elettrico.	
DM 30/11/83 Termini, definizioni generali e simboli grafici di preve incendi.		
DM 22/1/08 n.37 G.U.12/3/08 n.61	Regolamento concernente l'attuazione dell'articolo 11- quaterdecies, comma 13, lettera a) della legge n.248 del 2 dicembre 2005, recante riordino delle disposizioni in materia di attività di installazione degli impianti all'interno degli edifici.	
D.L. 09/04/2008 n. 81 G.U.30/4/08 n. 101	Attuazione dell'art. 1 della Legge 3 agosto 2007 n. 123 in materia di tutela della salute e della sicurezza nei luoghi di lavoro.	
DLgs 16/3/1999 n.79 G.U.31/3/99 n.75	Attuazione della direttiva 96/96/CE recante norme comuni per il mercato interno dell'elettricità.	
DLgs 29/12/2003 n.387 S.O.G.U. 31/1/04 n.25	Attuazione della direttiva 2001/77/CE relativa alla promozione dell'energia elettrica prodotta da fonti rinnovabili nel mercato interno dell'energia elettrica.	
Circ. 26/3/2010 n.5158 Ministero dell'interno	Guida per l'installazione degli impianti fotovoltaici.	
Delibera AEEG 6/8/2010 ARG/elt 125/10	Modifiche e integrazioni alla deliberazione dell'AEEG ARG/elt 99/08 in materia di condizioni tecniche ed economiche per la connessione alla rete con obbligo di connessione di terzi degli impianti di produzione (TICA).	
DM 05/5/2011	Regole applicative per il riconoscimento delle tariffe incentivanti - Quarto conto energia per il Fotovoltaico.	

Qualora le sopra elencate norme tecniche siano modificate o aggiornate, si applicano le norme più recenti.

Si applicano inoltre, per quanto compatibili con le norme sopra elencate, i documenti Tecnici emanati dalle società di distribuzione di energia elettrica riportanti disposizioni applicative per la connessione di impianti fotovoltaici collegati alla rete elettrica.

4 CONCLUSIONI

L'utilizzo delle fonti energetiche rinnovabili, fra cui il fotovoltaico, per produrre elettricità può oggi contemperare la crescente "fame" d'energia da parte delle strutture industriali con il rispetto e la salvaguardia dell'ambiente e delle popolazioni che in essa vivono.

Occorre sottolineare le caratteristiche della risorsa fotovoltaica come fonte di produzione di energia elettrica il cui impatto ambientale è limitato, specialmente attraverso una buona progettazione.

L'energia fotovoltaica è una fonte rinnovabile, in quanto non richiede alcun tipo di combustibile, ma utilizza l'energia solare. È pulita, perché, a differenza delle centrali di produzione di energia elettrica convenzionali, non provoca emissioni dannose per l'uomo e per l'ambiente. La produzione di energia elettrica mediante combustibili fossili comporta, infatti, l'emissione di enormi quantità di sostanze inquinanti.

Un maggior ricorso alle fonti rinnovabili di energia consentirebbe di affrancarci dalla schiavitù delle importazioni che, è bene ricordarlo, non riguardano solo l'energia elettrica ma anche la grande maggioranza dei combustibili utilizzati per generarla; il nostro paese ha stabilito come obiettivo nazionale quello di produrre almeno il 25% del consumo di energia usando le Fonti Rinnovabili, non farlo costerebbe ben più delle sole penalità economiche che l'Europa ci assegnerebbe.

I costi in termini di salute, ambiente e la strategica uscita da una dipendenza energetica pressoché totale, sono dei benefici assai più rilevanti e degni di uno sforzo ulteriore per far si che vengano realizzati.

I pannelli fotovoltaici non hanno alcun tipo di impatto radioattivo o chimico, visto che i componenti usati per la loro costruzione sono materie plastiche e metalliche.

In una centrale fotovoltaica non esistono volumi di costruzione in senso stretto, ma solo spazi tecnici; questi sono dati solo dalla cabina inverter e quella di consegna.

Il fotovoltaico è caratterizzato, come le altre tecnologie che utilizzano fonti di energia rinnovabili, da costi di investimento elevati in rapporto ai ridotti costi di gestione e manutenzione. A parità di costo dell'energia prodotta, tale specificità può avere il vantaggio di essere trasformata in occupazione, in quanto si viene a sostituire valore aggiunto al combustibile utilizzato negli impianti convenzionali. Il rapporto benefici/costi ambientali è perciò nettamente positivo dato che il rispetto della natura e l'assenza totale di scorie o emissioni fanno dell'energia fotovoltaica la migliore risposta al problema energetico in termini di tutela ambientale.

Il corretto inserimento di infrastrutture sul territorio per la produzione di energia da fonti rinnovabili rappresenta una delle priorità strategiche per ridefinire il rapporto dell'uomo con l'ambiente ed uno sviluppo sostenibile ed equilibrato.

5 DESCRIZIONE DELL'IMPIANTO

5.1 Dimensionamento

L'impianto ha lo scopo di produrre energia elettrica in corrente alternata trifase.

L'impianto fotovoltaico verrà allacciato ad un punto di fornitura con tensione di 15 kV Vac trifase e freguenza di 50 Hz.

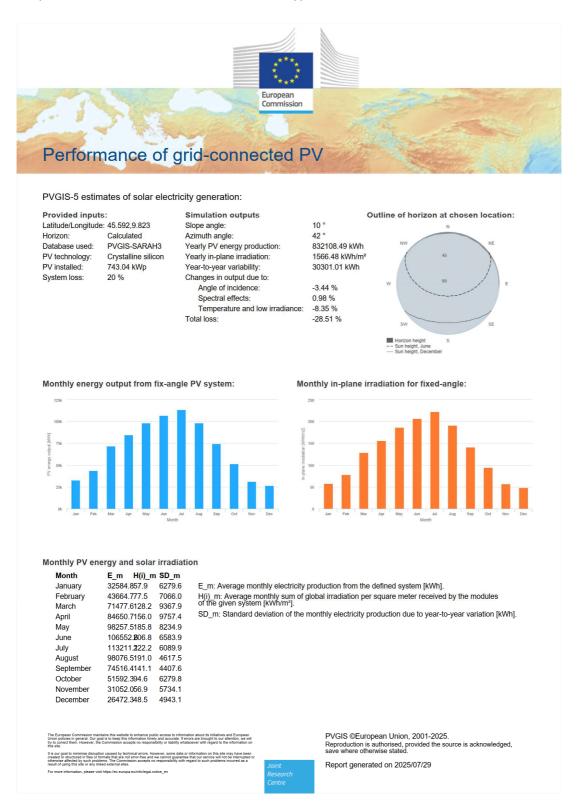
La potenza del generatore FV è intesa come somma delle potenze nominali di ciascun modulo misurata in condizioni standard.

Le condizioni standard di stima prevedono i seguenti valori

Irraggiamento pari a 1 kW/m² con distribuzione dello spettro solare di riferimento di Air Mass AM=1,5 e temperatura delle celle di 25°C, secondo le norme CEI EN 60904/-3 (CEI 82-3).

 $P = Pmod \ x \ Nmod = 720 \ Wp \ x \ 1032 \ moduli = \ 743,04 \ kWp.$

- La potenza nominale verso la rete elettrica Pca tiene conto delle perdite del sistema dovuto al discostarsi dalle **condizioni standard** ed alle perdite per la trasformazione della corrente da continua in alternata: i valori sotto riportati, sono valori di stima recepiti dalla norma UNI 10349:


-	perdite per scostamento dalle condizioni di targa (temperatura)	3%
-	perdite per riflessione	3%
-	perdite per mismatching tra stringhe (moduli)	3,5%
-	perdite in corrente continua	1,3%
-	perdite sul sistema di conversione cc/ca (stimato medio annuo)	3%
-	perdite sui servizi ausiliari	1,5%
-	perdite per polluzione dei moduli	1,4%

Per cui il rendimento stimato risulta essere pari a:

N = 83.3 %

6 PRODUZIONE STIMATA

*Importante: i valori di rendimento visualizzati sono dati approssimativi rilevati matematicamente.

6.1 Sistema elettrico in corrente continua

È il sistema elettrico dedicato alla sezione in corrente continua dell'impianto e comprende una serie di quadri elettrici che provvedono all'interconnessione elettrica ed alla protezione delle sezioni del generatore fotovoltaico.

È un sistema complesso che rappresenta una parte fondamentale dell'impianto in quanto è la sede privilegiata per i possibili guasti.

Le stringhe che compongono le sezioni del generatore fotovoltaico sono collegate fra loro in modo da arrivare in ingresso al convertitore secondo un sistema di quadri elettrici detti quadri di parallelo.

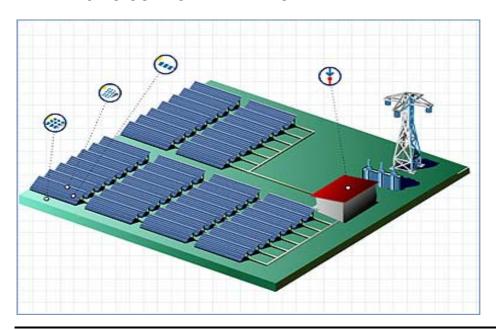
6.2 Sistema elettrico in corrente alternata

È costituito dai trasformatori per l'interfacciamento alla rete, dai quadri elettrici di parallelo delle sezioni in alternata dell'impianto in media tensione e dal quadro generale di protezione per guasti mutui tra rete ed impianto.

È la sezione più tradizionale dell'impianto in quanto utilizza componenti di uso comune negli impianti di generazione elettrica.

Le uscite dei convertitori statici faranno capo ad un quadro di interfaccia alla rete in modo che il sistema elettrico convertitori-rete possono essere mutuamente protetti.

Il quadro di interfaccia assolve la funzione di:

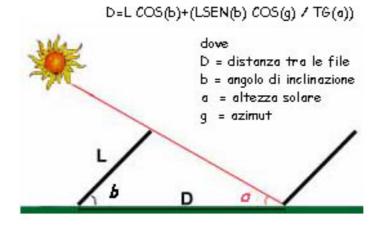

- proteggere elettricamente i convertitori da malfunzionamenti della rete di collegamento (sovratensioni, variazioni di frequenza, corto circuiti)
- proteggere elettricamente la rete da malfunzionamenti dei convertitori (sbilanciamento delle fasi elettriche, correnti omeopolari, ecc.)
- permettere il sezionamento in sicurezza elettrica

Il quadro di interfaccia è posizionato in interno nella cabina generale accanto ai convertitori statici.

6.3 Sistema di supervisione

È il sistema che consente il controllo dell'impianto sia in funzionamento locale che in telecontrollo da posizione remota (uffici), l'acquisizione dei dati di funzionamento e la diagnostica di guasto. Consente di monitorare il funzionamento dell'impianto on-line, avvisare gli operatori in caso di malfunzionamenti o anomalie.

7 DETTAGLIO COMPONENTI PRINCIPALI



7.1 Strutture di sostegno

Il generatore fotovoltaico sarà installato su di una struttura fissata a terra, con inclinazione ed orientamento fisso, la quale sarà realizzata con elementi metallici.

Le strutture saranno posizionate in modo da garantire l'orientamento dei moduli a 42° SUD-OVEST (vedi tavola Layout di impianto), con un'inclinazione di 10° (tilt) rispetto al piano orizzontale.

In questo layout di impianto si è cercato di ottimizzare la distanza tra le file in maniera che gli effetti dell'auto-ombreggiamento sulla produzione energetica annuale siano minimi.

Inserendo nella formula riportata qui sopra i valori relativi alla lunghezza L dei moduli, dell'angolo di orientamento rispetto al Sud delle file ($angolo\ di\ azimut\ g$), dell'angolo di inclinazione dei moduli ($angolo\ di\ tilt\ b$) e dell'altezza solare critica ($a=25^\circ$), si ottiene la **distanza ottimale tra le file** (D). In questo modo si assicura la completa assenza di ombreggiamento quando il sole si trova ad altezza solare maggiore 25° sull'orizzonte, e le perdite di energia sono molto limitate. I moduli fotovoltaici avranno prestazioni meccaniche idonee a sopportare i carichi statici di pressione di neve e vento secondo la normativa vigente.

7.2 Caratteristiche convertitore CC/CA

Il gruppo di conversione sarà idoneo al trasferimento della potenza dal generatore fotovoltaico alla rete o ai carichi per autoconsumo.

L'installazione di ciascun inverter verrà effettuato in conformità ai requisiti normativi tecnici e di sicurezza previsti dall'ente distributore di zona.

Il modello proposto è dotato di sistemi di inseguimento della massima potenza (noti come Mppt: Maximum Power Point Tracking) in grado di adattarsi in maniera ottimale alle variazioni dei parametri elettrici della cella conseguenti alle variazioni dell'irraggiamento solare, massimizzando in tal modo la potenza estratta.

7.3 Caratteristiche trasformatori

Caratteristiche elettriche e dati tecnici

Tensione nominale primaria		15
Tensione nominale secondaria a vuoto		400
Frequenza nominale		50
Installazione		Da interno
Potenza nominale	kVA	1000
Tensione di c.to c.to vcc% (120°C)	%	6

7.4 Cabina elettrica

In accordo a quanto prescritto dalla normativa sarà previsto, incorporato nel quadro di consegna, un dispositivo di interfaccia, munito di opportuna certificazione, per prevenire il funzionamento in isola dell'impianto, secondo le norme in vigore.

Il dispositivo di interfaccia per prevenire il funzionamento in isola agirà su di un contattore con bobina di sgancio, munito di opportuna certificazione. Le apparecchiature suddette saranno sistemate all'interno della cabina di ricezione, nella quale saranno anche previsti gli scomparti per il montaggio dei contatori fiscali.

7.5 Impianto di messa a terra

I moduli già provati in resistività in fase di collaudo finale in laboratorio, verranno messi a terra utilizzando il bullone autobloccante di serraggio del modulo alla guida. Il contatto alla struttura sarà garantito attraverso una rondella mordente posta a diretto contatto con la cornice del modulo e serrate tra cornice e piastra di fissaggio. Anche tutte le apparecchiature elettriche posate o semplicemente collegate, dovranno essere derivate dal punto più vicino della rete di terra a mezzo di corda o piatto di rame. Tutte le carpenterie, pull boxes, canaline e quanto altro possa accidentalmente venirsi a trovare sotto tensione, dovranno essere messe accuratamente a terra. La rete di terra dell'impianto sarà costituita da una bandella di acciaio zincato a intimo contatto con il terreno. Le apparecchiature saranno collegate alla terra attraverso il cavo di alimentazione. Tutte le terre saranno collegate alla terra generale d'impianto e/o a puntazze indipendenti, all'interno del locale tecnico.

8 VERIFICHE ELETTRICHE E MISURE DI PROTEZIONE

8.1 Variazione della tensione con la temperatura per la sezione c.c.

Occorre verificare che in corrispondenza dei valori minimi di temperatura esterna e dei valori massimi di temperatura raggiungibili dai moduli fotovoltaici risultino verificate tutte le seguenti disuguaglianze:

 $Vm \ min \ge V_{invMPPTmin}$

 $Vm max \leq V_{inv MPPT max}$

Voc max < V_{inv max}

dove:

Vm = tensione alla massima potenza, delle stringhe fotovoltaiche

V_{inv MPPT min} = tensione minima ammissibile dall'inverter per la ricerca del punto di massima

potenza

V_{inv MPPTmax} = tensione massima ammissibile dall'inverter per la ricerca del punto di massima

potenza

Voc = tensione a vuoto delle stringhe fotovoltaiche

V_{inv max} = tensione massima in corrente continua ammissibile ai morsetti dell'inverter

Considerando una variazione della tensione a circuito aperto di ogni cella in dipendenza della temperatura pari a -0,250 %/°C sulla tensione a vuoto e i limiti di temperatura estremi pari a -10°C (dati di progetto) e +70°C, Vm e Voc assumono valori differenti rispetto a quelli misurati a STC (25°C).

Assumendo che tali grandezze varino linearmente con la temperatura, le precedenti disuguaglianze, nei vari casi, sono riportate nella tabella di dimensionamento impianto.

In tutti i casi le condizioni di verifica risultano rispettate e pertanto si può concludere che vi è compatibilità tra le stringhe di moduli fotovoltaici e il tipo di inverter adottato.

8.2 Verifica delle protezioni contro i corto circuiti

Per la parte di circuito in corrente continua, la protezione contro il corto circuito è assicurata dalla caratteristica tensione-corrente dei moduli fotovoltaici che limita la corrente di corto circuito degli stessi a valori noti e di poco superiori alla loro corrente nominale. Per ciò che riguarda il circuito in corrente alternata, la protezione contro il corto circuito è assicurata dai dispositivi limitatori contenuti all'interno dell'inverter.

8.3 Misure di protezione contro i contatti diretti

La protezione contro i contatti diretti è assicurata dall'utilizzo dei seguenti accorgimenti da considerare per la progettazione di dettaglio:

- utilizzo di componenti aventi un idoneo grado di protezione alla penetrazione di solidi e liquidi;
- collegamenti prescrivendo l'utilizzo di cavo rivestito con guaina esterna protettiva, idoneo per la tensione nominale utilizzata e alloggiato in condotto porta cavi (canale o tubo a seconda del tratto) idoneo allo scopo. Alcuni brevi tratti di collegamento tra i moduli fotovoltaici non alloggiati in tubi o canali essendo protetti dai moduli stessi, non sono soggetti a sollecitazioni meccaniche di alcun tipo, ne' risultano ubicati in luoghi ove sussistano rischi di danneggiamento.

8.4 Misure di protezione contro i contatti indiretti

8.4.1 Sistema in corrente alternata (TN-S)

La protezione contro i contatti indiretti è assicurata dalla prescrizione nella progettazione definitiva.

8.4.2 Sistema in corrente continua (IT) e rete di terra

Il sistema in corrente continua costituito dalle serie di moduli fotovoltaici e dai loro collegamenti all'inverter è un sistema denominato flottante cioè senza punto di contatto a terra. Ed i pannelli sono a doppia classe d'isolamento.

Collegamento al conduttore PE delle masse metalliche.

Nonostante dal punto di vista normativo non sussista totale chiarezza sull'argomento, l'elevato numero di moduli fotovoltaici suggerisce misure di protezione aggiuntive rispetto a quanto prescritto dalle norme: è stata valutata nel dettaglio l'esigenza di un collegamento equipotenziale di ogni struttura di sostegno facente capo ad una stringa di moduli fotovoltaici.

L'adozione di questa soluzione, prescrive di verificare che tra i moduli fotovoltaici e le strutture metalliche non vi siano interposte parti isolanti costituite da anelli di plastica o gomma, parti

ossidate o altro. Questo per far si che, dati i numerosi punti di collegamento, si possa supporre con certezza la continuità elettrica per struttura. In fase di collaudo la continuità elettrica dovrà comunque essere verificata.

8.5 Misure di protezione sul collegamento alla rete elettrica

La protezione del sistema di generazione fotovoltaica nei confronti sia della rete auto produttore che della rete di distribuzione pubblica dovrà essere realizzata in fase di progettazione di dettaglio in conformità a quanto previsto dalla norma. La normativa impone che l'impianto venga equipaggiato con un sistema di protezione che si articola su 3 livelli: dispositivo del generatore, dispositivo di interfaccia, dispositivo generale.

8.5.1 Dispositivo di generatore

Gli inverter sono internamente protetti contro il cortocircuito e il sovraccarico. Il riconoscimento della presenza di guasti interni provoca l'immediato distacco dell'inverter dalla rete elettrica.

8.5.2 Dispositivo di interfaccia

Il dispositivo di interfaccia deve provocare il distacco dell'intero sistema di generazione in caso di guasto sulla rete elettrica. In particolare, secondo quanto previsto, il riconoscimento di eventuali anomalie sulla rete avviene considerando come anormali le condizioni di funzionamento che fuoriescono dai limiti di tensione e frequenza; il dispositivo dovrà essere certificato da ente accreditato.

Nel progetto in esame, il dispositivo di interfaccia dovrà risultare fisicamente installato esterno agli inverter in quadro apposito. Le funzioni di protezioni del dispositivo di interfaccia dovranno essere appositamente certificate tramite utilizzo di protezioni omologate e certificate da laboratorio accreditato.

8.5.3 Dispositivo generale

Il dispositivo generale ha la funzione di salvaguardare il funzionamento della rete nei confronti di guasti nel sistema di generazione elettrica.

8.6 Misure di protezione contro gli effetti delle scariche atmosferiche

8.6.1 Fulminazione diretta

Per la valutazione di protezione contro la fulminazione diretta, si rimanda alla relazione da eseguire in base alla normativa in vigore.

8.6.2 Fulminazione indiretta

L'abbattersi di scariche atmosferiche in prossimità dell'impianto può provocare il concatenamento del flusso magnetico associato alla corrente di fulmine con i circuiti dell'impianto fotovoltaico, così da provocare sovratensioni in grado di danneggiare potenzialmente, in particolare, l'inverter. Per la valutazione di protezione contro la fulminazione indiretta, si rimanda alla relazione da eseguire in base alla normativa in vigore.