EXIMIA Srl

PIANO ATTUATIVO CON VALENZA CONCESSORIA COMPARTO B – ATU DI RIGENERAZIONE 4

Valutazione del clima acustico Prevalutazione di impatto acustico

Giugno 2025

ing. OLIVIERO GUFFANTI

Tecnico Competente nel campo dell'acustica ambientale
Iscrizione Elenco Nazionale n. 1834

SOMMARIO

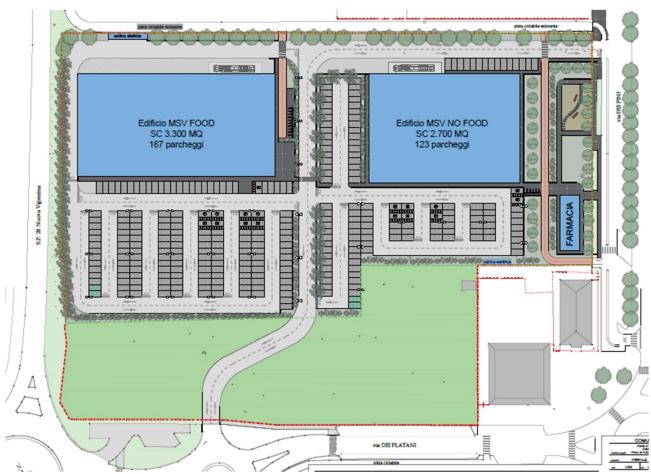
RIFERIMENTI NORMATIVI	3
DESCRIZIONE INTERVENTO IN OGGETTO E INQUADRAMENTO TERRITORIALE	4
RILIEVI FONOMETRICI	7
STRUMENTAZIONE UTILIZZATA	7
PIANO DELLE MISURE	8
RISULTATI DEI RILIEVI	9
VALUTAZIONE DEL CLIMA ACUSTICO	20
PREVALUTAZIONE DI IMPATTO ACUSTICO	23
TREVIEW INZIGNE DI INII MI TO NEUSTICO	
METODOLOGIA	23
SORGENTI SONORE ESTERNE	23
PREVISIONE DELLA DIFFUSIONE SONORA IN ESTERNO	23
PROPAGAZIONE IN ESTERNO	23
ATTENUAZIONE DOVUTA ALL'EFFETTO SUOLO	24
Individuazione recettori sensibili	25
VALUTAZIONE IMPATTO ACUSTICO IMPIANTI EDIFICI COMMERCIALI	26
IMPLEMENTAZIONE DEL MODELLO	26
VALUTAZIONE DELL'IMPATTO ACUSTICO DA TRAFFICO VEICOLARE	28
MODELLO PER LA SORGENTE	28
MODELLO PER LA PROPAGAZIONE	29
IMPLEMENTAZIONE DEL MODELLO	31

Riferimenti normativi

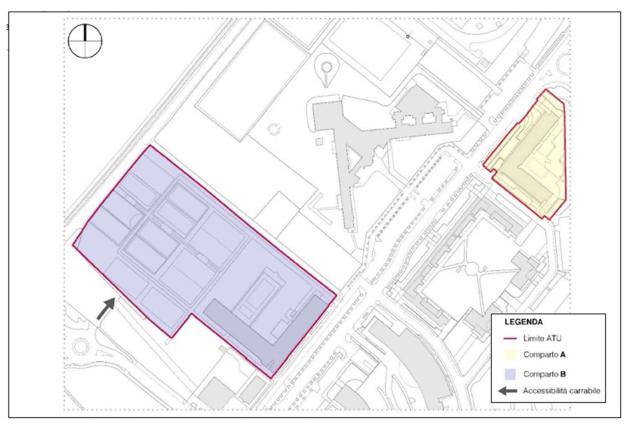
La presente relazione descrive la valutazione del clima acustico nella zona oggetto di variante urbanistica come da Accordo di Programma "compendio ex ospedale Largo Barozzi". L'art 8 comma 3 della Legge quadro sull'inquinamento acustico (L. 447/95) sancisce l'obbligo di produrre tale valutazione per gli edifici residenziali quando sono prossimi alle opere di cui all'art. 8 comma 2 (aeroporti, importanti arterie stradali, discoteche, impianti sportivi-ricreativi, ferrovie)

.

La caratterizzazione acustica è stata effettuato come previsto dalla norma UNI 9884 "Caratterizzazione acustica del territorio mediante la descrizione del rumore ambientale".


La caratterizzazione di un territorio da un punto di vista acustico costituisce uno strumento conoscitivo che consente: di comparare la rumorosità esistente nel territorio con la classificazione acustica dello stesso come definita dalla legislazione vigente, adottare provvedimenti atti a ridurre l'impatto del rumore sulla collettività e verificare la compatibilità tra sorgenti sonore e destinazioni d'uso del territorio - quest'ultimo aspetto di particolare importanza per la valutazione in oggetto.

LEGGE 26 OTTOBRE 1995, N. 447	Legge quadro sull'inquinamento acustico		
D.P.C.M. 14 NOVEMBRE 1997	Determinazione dei valori limite delle sorgenti sonore		
D.M. 16 MARZO 1998	Tecniche di rilevamento e di misurazione dell'inquinamento acustico		
L.R. 10 AGOSTO 2001, N. 13	Norme in materia di inquinamento acustico		
D.G.R. 08 MARZO 2002, N. 7/8313	Legge n. 447/95 "Legge quadro sull'inquinamento acustico" e L.R. 10 agosto 2001, n. 13 "Norme in materia di inquinamento acustico". Approvazione del documento "Modalità e criteri di redazione della documentazione di previsione di impatto acustico e di valutazione previsionale del clima acustico"		
D.P.R. 30 MARZO 2004, N. 142	Disposizioni per il contenimento e la prevenzione dell'inquinamento acustico derivante dal traffico veicolare, a norma dell'articolo 11 della legge 26 ottobre 1995, n. 447		


Descrizione intervento in oggetto e inquadramento territoriale

L'area oggetto della presente relazione si trova nel centro abitato del territorio comunale di Pieve Emanuele. Nel concreto, per l'ambito di trasformazione Urbana 4 comparto B , la proposta di riconversione e rifunzionalizzazione prevede:

- Suddivisione dell'ambito in comparti:
 Comparto B con la realizzazione di nuovi fabbricati commerciali (FOOD Sup. coperta 3300 mq, NO-FOOD Sup. coperta 2700 mq);
- Opere in cessione che riguardano realizzazione di nuova viabilità interna al comparto che mette in comunicazione Via di Pini con la rotatoria su Via dei Platani (rotatoria minore prima dell'intersezione su SP 28 Nuova Vigentina)
- Aree a verde a confine del lotto e sui principali assi viari
- Le aree a parcheggio saranno organizzate nella seguente modalità:
 167 posti auto per Media Struttura di Vendita (Food)
 123 posti auto per Media Struttura di Vendita (No-Food)

A livello urbanistico si riportano di seguito assetto urbanistico attuale ed assetto urbanistico di progetto

ESTRATTO P.G.T. - ATU DI RIGENERAZIONE 4

La presente relazione tecnica è riferita al solo comparto B

La viabilità principale della zona è costituita da:

- A Nord-Ovest del comparto dalla SP 28 Nuova Vigentina
- A Sud-Ovest del comparto da via dei Platani, raccordo fra la suddetta Via Provinciale e la viabilità di attraversamento del centro abitato
- A Sud-Est Via Dei Pini strada importante asse viario di attraversamento del centro abitato con viabilità laterale ed arre di parcheggio

Il Comune di Pieve ha approvato una propria classificazione acustica del territorio ai sensi della legge n°447 del 26.10.1995 "Legge quadro sull'inquinamento acustico".

Il lotto di intervento è pertanto classificato in Classe III "Aree di tipo misto" con tutta la fascia compresa fra la SP 28 e Via dei Pini; SP28 nuova Vigevanese è in Classe IV, la parte di centro abitato sul lato opposto di via dei Pini è in Classe II

Classe III "Aree di tipo misto"

I valori limite assoluti di immissione relativi a tale classe sono:

- o 60 dB(A) per il periodo diurno
- o 50 dB(A) per il periodo notturno

Si riporta estratto della classificazione del territorio in zone acustiche con indicazione della zona in oggetto

Si evidenziano recettori sensibili (Scuole o case di cura) nelle vicinanze del comparto di intervento; in particolare la scuola primaria M.L. King e la scuola dell'infanzia Collodi risultano inserite in un comparto di Classe I contornato da una piccola fascia di Classe II (che ricomprende parte del parco Tiziana verso l'area oggetto di intervento)

Rilievi fonometrici

Strumentazione utilizzata

Per l'esecuzione delle misure si sono utilizzati i seguenti fonometri integratori:

- fonometro Svantek mod. 959 matricola 12987 conforme alla classe 1 delle norme EN 60651/94 ed EN 60804/94, dotato di microfono Svantek mod. SV22 N° matricola 4011696 conforme alle norme EN 61094-1/94, EN 61094-2/93, EN 61094-3/ 95, EN 61094-4/95.
- fonometro NTI Audio mod. XL2 matricola 3284 conforma alla classe 1 delle norme EN 60651/94 ed EN 60804/94, dotato di microfono Pacific mod. M2230 conforme alle norme EN 61094-1/94, EN 61094-2/93, EN 61094-3/95, EN 61094-4/95.

I fonometri sono stati calibrati all'inizio ed alla fine di ogni campagna di misure con calibratore acustico Bruel & Kjaer mod. 4230 n° matricola 1594819, conforme alle norme CEI 29-4. Le calibrazioni effettuate prima e dopo ogni ciclo di misura, hanno differito per quantità minori di 0,5 dB.

La strumentazione di misura utilizzata è stata sottoposta a taratura annuale presso un centro di taratura ACCREDIA.

Piano delle misure

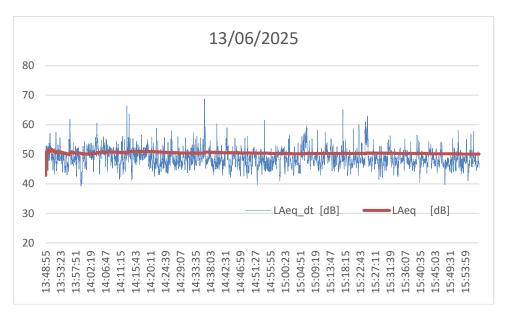
Per verificare il clima acustico di zona si è articolato un piano di misura così articolato:

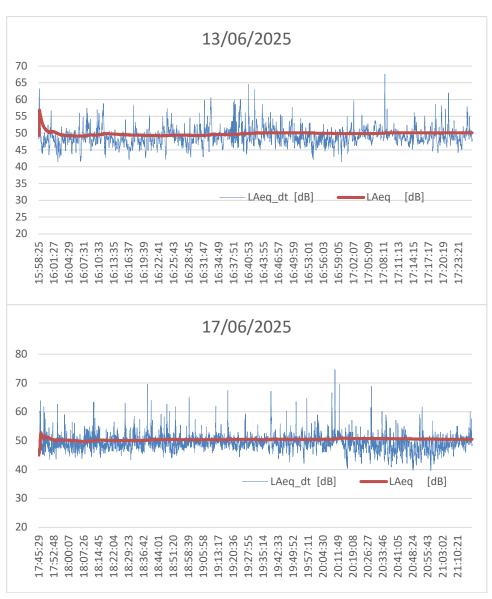
- individuazione di due punti di misura a distanze diverse dagli assi viari principali che delimitano il lotto di intervento (SP 28, Via dei Platani e Via dei Pini)
- esecuzione di rilievi fonometrici in diverse giornate feriali per un congruo tempo di misura.

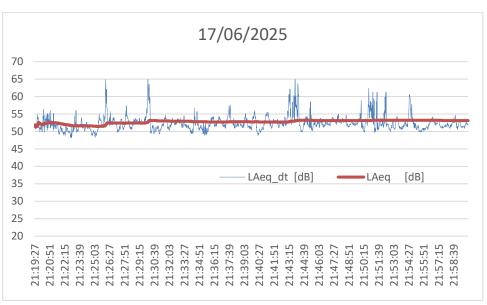
Postazioni di misura: in figura seguente sono indicate le postazioni di misura Area Cani 🔠 La Fenice Jud Club - Tart Parco Tiziana

Risultati dei rilievi

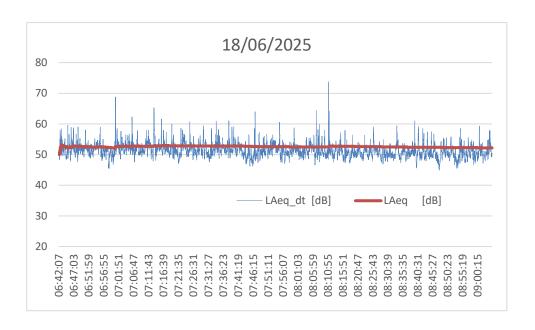
Postazione A

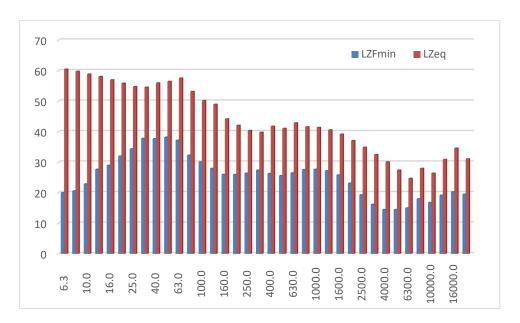

Il punto di misura è collocato nell'area esterna del comparto in oggetto, sul confine in direzione degli edifici scolastici a Nord Est, a margine della pista ciclabile esistente. La postazione dista circa 40 metri dalla Nuova Vigevanese e circa 3 metri dalla pista ciclabile (discretamente utilizzata in questa stagione) ed il microfono è alla quota di circa metri 4 dal piano del terreno.



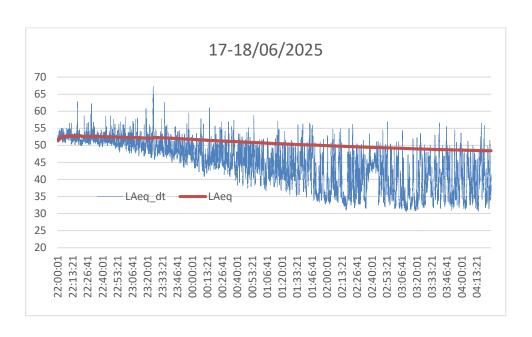

PERIODO DIURNO

Tempo osservazione	Leq	Durata misura	Altri parametri misurati
condizioni atmosferiche	[dB(A)]	[minuti]	[dB(A)]
13/06/2025 13.45 – 17.30	50,1	129	L90:45,1 L50:48,3 L10:52,3
Variabile, assenza di vento	50,1	88	L90:45,9 L50:48,6 L10:51,9
17/06/2025 17.45 – 22.00	50,5	122	L90:46,1 L50:49,1 L10:51,8
Variabile, assenza di vento	53,1	40	L90:45,9 L50:49,0 L10:52,4
18/06/2025 06.40 – 09.00 Sereno, assenza di vento	52,2	142	L90:47,1 L50:50,2 L10:53,4


Tempo complessivo di misura: 10 ore 21 minuti Il Leq complessivo riferito all'intero periodo di misura è pari a 51,0 dB(A)



Nota: abbaiare di cani



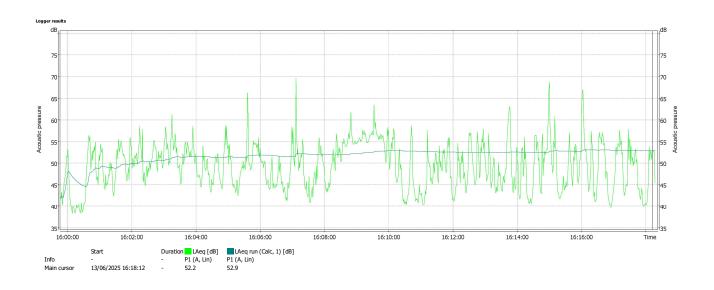
L'analisi in frequenza non evidenziato presenza di toni puri

PERIODO NOTTURNO

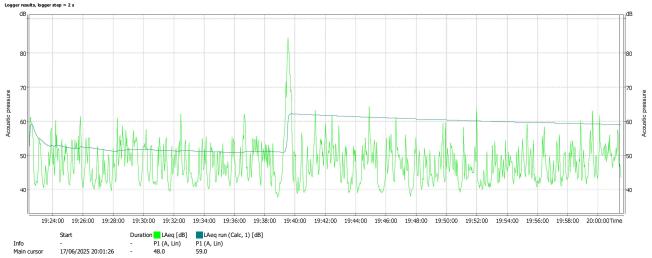
Tempo osservazione condizioni atmosferiche	Leq	Durata misura	Altri parametri misurati
	[dB(A)]	[minuti]	[dB(A)]
13-14/04/2023 22.00 – 04.26 Seren, assenza di vento	48,4	326	L90: 30,2 L50: 35,9 L10: 49,7

Postazione B

Il punto di misura è collocato alla distanza di circa 10 metri dall'asse di via Dei Platani in corrispondenza dei lotti oggetto di intervento ed lla distanza di circa 110 metri dalla SP28. Il microfono è posizionato alla quota 1,5metri dal suolo (al di sopra della recinzione esistente)



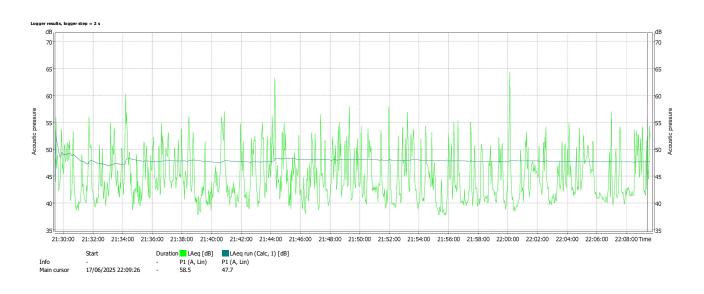
PERIODO DIURNO

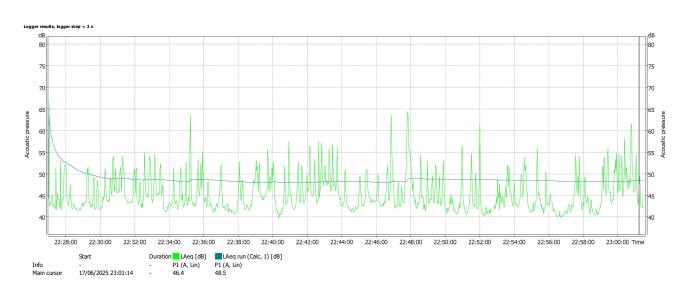

Tempo osservazione condizioni atmosferiche	Leq [dB(A)]	Durata misura [minuti]	Altri parametri misurati [dB(A)]
13/06/2025 16.00 – 16.20		[mmuti]	[ub(A)]
Sereno, assenza di vento	52,9	20	L90:44,2 L50:49,7 L10:54,5
17/06/2025 18.00 – 20.00	52,8	52	L90:44,8 L50:50,2 L10:54,1
Sereno, assenza di vento	59,0	35	L90:43,6 L50:49,0 L10:53,9
18/06/2025 06.50 – 08.45 Sereno, assenza di vento	51,1	44	L90:41,9 L50:49,8 L10:53,2
	52,0	55	L90:43,5 L50:50,1 L10:53,9

Tempo complessivo di misura: 3 ore 26 minuti

Il Leq complessivo riferito all'intero periodo di misura è pari a 54,3 dB(A)

Nota: transito ambulanza via dei Platani




PERIODO NOTTURNO

Tempo osservazione condizioni atmosferiche	Leq [dB(A)]	Durata misura [minuti]	Altri parametri misurati [dB(A)]
17/06/2025 21.30 – 23.00	47,7	40	L90:40,4 L50:46,4 L10:49,8
Sereno, assenza di vento	48,5	35	L90:40,9 L50:46,5 L10:50,7

Tempo complessivo di misura: 1 ora 15 minuti

Il Leq complessivo riferito all'intero periodo di misura è pari a 48,1 dB(A)

Punto di misura	Leq periodo diurno [dB(A)]	Leq periodo notturno [dB(A)]	Limiti di zona Classe III (giorno/notte)
A	51,0	48,4	60,0 / 50,0
В	54,3	48,1	60,0 / 50,0

I limiti di Classe III sono sempre rispettati

Il clima acustico presente deriva quasi esclusivamente a rumore da traffico veicolare; in funzione della posizione dei punti di misura, si è osservato che in margine agli assi viari esistenti si possono rilevare dei superamenti dei limiti di Classe III.

L'analisi dei parametri rilevati permette di concludere che, i limiti di zona sono rispettati.

VALUTAZIONE DEL CLIMA ACUSTICO

Di seguito sono riportati i punti analizzati in riferimento al clima acustico dell'area oggetto di intervento.

a) descrizione del rumore ambientale secondo norma UNI 9884

Per i rilievi acustici si fa riferimento a quanto già illustrato nelle pagine precedenti

b) caratteristiche temporali nella variabilità dei livelli sonori rilevabili al confine del lotto di intervento

Come si evince dai grafici riportati alle pag. precedenti il livello equivalente misurato dipende prevalentemente dal traffico veicolare lungo gli assi viari più vicini al comparto (SP28 Nuova Vigentina, Via dei Platani e Via dei Pini).

Da una primo confronto il livello di rumorosità misurato rispetta i valori assoluti di immissione per la Classe III.

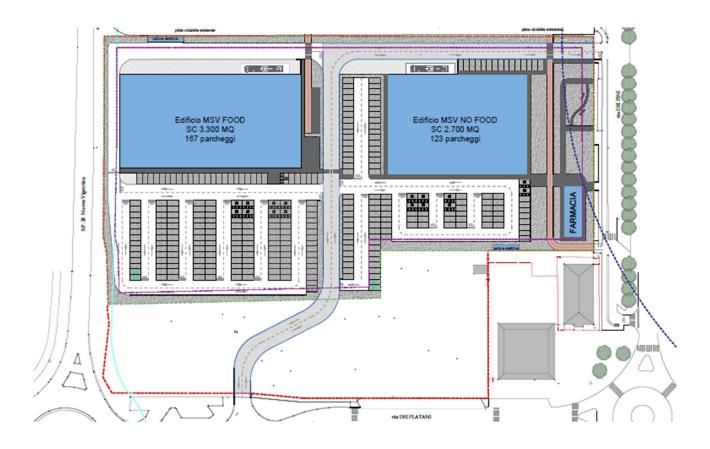
Dal 2004 per il rumore derivante da traffico veicolare esistono appositi limiti, stabiliti dal DPR 142/2004 che in funzione della classificazione dell'arteria stradale determina delle fasce di territorio con dei limiti specifici applicabili al solo rumore da traffico veicolare che quindi si sovrappongono di fatto ai limiti di cui all'azzonamento acustico.

Nel caso in esame entrambi gli assi viari citati sono azzonati in Classe IV ed in Classe III, per il decreto in questione valgono quindi i limiti di zona (Classe III) per una fascia di 30 metri a partire dal margine della strada in oggetto.

Diverso è il discorso di Via dei Pinti che, inserita in classe III, risulta di fatto essere confine verso la zona di classe II (Residence Ripamonti); in questo caso il rumore da traffico rispetta bene i limiti di Classe III ma il rispetto dei limiti di Classe II è garantito solo all'interno locali per gli edifici più vicini

Per un maggior dettaglio si osservi la mappa di rumore riportata in Allegato, generata con programma di simulazione acustica

L'indagine effettuata consente di concludere che, sono rispettati i limiti di Classe III


c) informazioni e dati circa la disposizione spaziale degli edifici in progetto

Per vincoli di tipo architettonico e funzionale gli edifici in progetto nel comparto B, hanno una disposizione tale da minimizzare l'impatto acustico derivante dal transito di autoveicoli, cioè con una distribuzione di 2 edifici con il lato maggiore rivolto verso via dei Platani e con solo i lati minori degli edifici esposti a rumore dell'arteria stradale maggiore (SP28)

Per la restante parte di Piano si osserva come:

- i due corpi principali delle are commerciali previsti determinano di fatto una schermatura del rumore proveniente dalla circolazione principale per i recettori sensibili lungo Via dei Pini (in particolare per il complesso scolastico esistente);
- diversamente le facciate rivolte verso SP. 28 e Via dei Pini sono parzialmente riflettenti il suono generato dal traffico veicolare lungo la via stessa e pertanto si configurano come elemento peggiorativo.

A pagina seguente si riporta stralcio planimetrici relativo alle situazioni sopra descritte

A questo stadio di progettazione non si ha ancora la definizione e la destinazione dei locali all'interno degli edifici nuovi. Si osserva comunque come i locali che richiedono un maggior grado di privacy sono dislocati negli edifici non immediatamente a ridosso delle principali arterie stradali, scelta come già detto ottimale dal punto di vista acustico.

Nella progettazione di dettaglio verranno adottati materiali ed accorgimenti per garantire il rispetto dei parametri di cui al DPCM 05.12.1997 per i requisiti acustici passivi.

d) valutazione di compatibilità dal punto di vista acustico

L'intervento in oggetto appare compatibile dal punto di vista acustico con la zona in esame; la destinazione commerciale appare in linea con il clima acustico rilevato. Per quanto concerne l'attività di edificio adibito a farmacia un eventuale funzione di edifici ad uso medico è consentita ma deve al contempo prevedere un'accurata progettazione e scelta dei requisiti acustici passivi onde realizzare un'efficace protezione degli ambienti interni rispetto alle sorgenti sonore esterne.

e) variazione del clima acustico introdotta dall'intervento.

La variazione di clima acustico introdotta dal progetto di Piano Integrato di Inervento è causata da molteplici fattori.

- Variazione volume edifici rispetto alla situazione precedente il volume degli edifici in progetto di cui al comparto B (di nuova realizzazione) si colloca nell'area compresa fra la SP28 e Via dei Pini; per la conformazione delle facciate e per l'altezza, superiore comunque inferiore a 10 metri, essi si non hanno un grande effetto schermante rispetto al rumore da traffico veicolare lungo la provincialeale. La variazione di clima acustico introdotto è in generale poco significativa (leggero incremento del rumore) per alcuni degli edifici esistenti sul lato opposto di Via dei Pini.
- Presenza di sorgenti sonore esterne di tipo impiantistico il progetto energetico dell'edificio, sarà volto al massimo contenimento energetico ed alla massima affidabilità degli impianti, e prevede l'utilizzo di pompe di calore polivalenti. Gli impianti connessi agli edifici in progetto si configurano come sorgente sonora meritevole di valutazione di impatto acustico e verranno considerati nei paragrafi seguenti
- Traffico indotto Il traffico indotto dalle nuove funzioni e dai nuovi edifici previsti dall'
 Accordo di Piano è non trascurabile in termini assoluti, ma non risulta essere tale da
 stravolgere le condizioni di traffico attualmente esistenti sulle vie interessate. Uno
 studio più approfondito della variazione dei volumi di traffico e dei relativi incrementi
 di rumore viene proposto nei paragrafi seguenti

PREVALUTAZIONE DI IMPATTO ACUSTICO

Metodologia

Sorgenti sonore esterne

La valutazione della rumorosità generata dalle sorgenti esterne viene effettuata a partire da livelli di rumorosità ma non i livelli di potenza acustica.

Per quanto riguarda la propagazione del rumore in campo esterno ci si è rifatti al modello di calcolo che determina i valori di pressione sonora al ricettore a partire dalla potenza acustica della sorgente a meno dell'attenuazione complessiva secondo la nota formula

$$L_p = L_w - A_{tot}$$

Dove Lp ed Lw sono rispettivamente i valori di pressione potenza sonora ed Atot è la somma dei componenti Adiv, Aground, Arefl, Amisc

Per calcolare la potenza di sorgenti esterne agli edifici si è utilizzata la formula seguente :

$$L_{w,j} = 10 * \log(\sum_{i=1}^{p} 10^{\frac{L_{w,i}}{10}}) + D_{\theta,j}$$
 (dB)

dove Lw,i è il livello di potenza sonora della sorgente i-esima e p è il numero di sorgenti del segmento.

Previsione della diffusione sonora in esterno

Per utilizzare il modello di previsione descritto al paragrafo »Metodologia di valutazione previsionale» si sono schematizzate le sorgenti equivalenti relative sia agli impianti esterni che agli elementi strutturali del nuovo impianto produttivo.

L'ambito di tale previsione è riferito alla porzione di territorio compresa in un settore avente dimensioni 600 X 900 metri centrato sull'insediamento in oggetto.

Propagazione in esterno

La valutazione della propagazione della rumorosità in ambiente esterno è stata condotta adottando un fattore di attenuazione Atot che, tiene conto di vari fattori di attenuazione oltre a quello principale dovuto alla distanza.

Al fine di poter operare in modo rigoroso si è scelto di discretizzare la porzione di territorio considerata in aree omogenee di forma quadrata con lato pari a 10 metri (2 metri per il dettaglio delle sorgenti in copertura). Così operando l'intero territorio è stato caratterizzato da un reticolo di cui ogni singola cella contiene informazioni fisico-descrittive (es. area fluviale, area a prato o campo, area boschiva, edificio, zona a bassa densità costruttiva etc.).

La caratterizzazione del territorio così effettuata consente una buona descrizione sia dei fattori di attenuazione spaziali (dovuti alla distanza) sia dei fattori di attenuazione specifici (dovuti alla particolarità del terreno o alla presenza di effetti schermanti).

Il motivo della discretizzazione del territorio è quello di poter creare un modello basato su una serie di fogli di calcolo le cui celle corrispondono alla discretizzazione del territorio adottata; il modello così implementato consente di sovrapporre il contributo delle single sorgenti sonore con le relative attenuazioni in funzione della distanza ed i fattori di attenuazione che non dipendono dalla distanza schematizzati su diversi livelli secondo la griglia sopra descritta.

Di seguito vengono brevemente descritti i fattori di attenuazione così come sono stati calcolati ed implementati nel modello sopra descritto.

Attenuazione dovuta all'effetto suolo

Questo fattore di attenuazione deriva dall'interferenza fra il suono diretto che si propaga verso il ricevente ed il suono riflesso dal terreno.

$$A_{ground} = 4.8 - \frac{2h_m}{d} \left(17 + \frac{300}{d} \right)$$

Dove d è la distanza sorgente ricevente ed hm l'altezza media del percorso.

Individuazione recettori sensibili

Nella figura seguente vengono identificati i recettori sensibili più vicini è potenzialmente influenzati dagli incrementi di rumorosità introdotti dal Piano.

Con riferimento all figura di cui sopra sono identificati i seguenti recettori sensibili:


Identificativo	Descrizione	Zona acustica
Recettore 1	Isittuto scolatico M. L. King e scuola	Classe I
	dell'infanzia Collodi; edif. 2 piani fuori terra	
Recettore 2	Edificio residenziale plurifamiliare (8 piani	Classe II
	fuori terra)	
Recettore 3	Struttura ricettiva - Residence (10 piani fuori	Classe II
	terra)	

Valutazione impatto acustico impianti edifici commerciali

Implementazione del modello

Propagazione in direzione dei recettori sensibili

Con riferimento alle sorgenti sonore degli edifici commerciali si osserva che, compatibilmente con la progettazione definitiva e di dettaglio, le unità impiantistiche esterne dovranno essere posizionate, a terra o in copertura, in corrispondenza delle zone evidenziato in figura seguente (circoli in colore blu)

Sorgenti sonore considerate e loro livelli di pressione sonora (desunti da impianti analoghi):

- Unità di trattamento aria; SPL 75 dB(A) a 1 metro
- Gruppi frigo; SPL 70 dB(A) a 1 metro

Contributi sonori da ogni sorgente

Recettore sensibile	Distanza da sorgenti sonore	Livello sonoro al recettore
1	115 m, 200 m	35,0 dB(A)
2	120 m, 140 m, 220 m	34,0 dB(A)
3	140 m, 150 m, 250 m	33,0 dB(A)

L'incremento di rumorosità derivante dalle sorgenti sonore fisse (di tipo impiantistico) è i lseguente:

Al recettore 1 l'incremento previsto è pari a 0,5 dB(A)

Ai recettori 2 e 3 l'incremento previsto è trascurabile

Per avere una corretta quantificazione dell'impatto acustico è necessario considerare tutti gli aspetti derivanti dall'intervento in progetto comprese le attività di carico/scarico e il traffico indotto

conoscere anche il livello di rumore residuo al recettore sensibile; in assenza di dati specifici ci si è rifatti alle mappe di rumore allegate relative allo stato di fatto.

La mappa di rumore Post-Operam consente di valutare tutti questi aspetti

Valutazione dell'impatto acustico da traffico veicolare

Per la previsione dei livelli di rumore generati dal traffico nelle condizioni future, si è ricorsi ad un modello di valutazione predittiva conforme alle linee guida RLS 90.

Tali linee guida definiscono gli standard tecnici e le procedure di misura per predire ed abbattere il rumore di strade e parcheggi; in particolare viene valutato presso il recettore sensibile il livello sonoro diurno (dalle 6.00 alle 22.00) e notturno (dalle 22.00 alle 6.00) e confrontato con i limiti legislativi.

Lo standard utilizza due diversi modelli il modello per la sorgente e quello per la propagazione.

Modello per la sorgente

Utilizza i dati di traffico rilevati e fornisce i risultati di pressione sonora in un punto utilizzato come riferimento posto a 25 m di distanza dall'asse stradale ed a 4 metri di altezza dal suolo.

I livelli di rumore così calcolati sono definiti LME Level mean Emission.

L'altezza di emissione è posta alla quota di 0,5 m dal piano stradale.

I dati necessari a calcolare il livello alla sorgente sonora sono:

- dati di flusso dei veicoli (numero veicoli / ora e % veicoli pesanti)
- velocità oraria delle delle automobili e dei camion
- stato e tipologia della superficie stradale
- pendenza della strada
- fenomeni di riflessione

$$L_{ME} = L_m(25) + C_{speed} + C_{roadsurface} + C_{gradient} + C_{ref}$$

dove Lm(25) è il livello standard nelle seguenti condizioni: velocità di 100 Km/h per le auto (Lkw) e 80 Km/h per i camion (Pkw); superficie della strada di asfalto convenzionale; pendenza della strada 5%; propagazione in campo libero.

$$L_m(25) = 37.3 + 10 \cdot \log[M \cdot (1 + 0.082 \cdot P)]$$

con:

- M = flusso di traffico orario medio complessivo
- P = percentuale dei veicoli pesanti che superano le 2,8 tonnellate.

Nel caso in esame si è utilizzata la composizione oraria del traffico fornita dal modello in funzione della tipologia di strada (strade statali P variabile fra 7 e 20%)

$$C_{speed} = L_{Pkw} - 37.3 + 10 \cdot \log \left[\frac{\left(100 + \left(10^{0.1C}\right) \cdot P\right)}{\left(100 + 8.23 \cdot P\right)} \right]$$

con:

$$L_{Pkw} = 27.7 + 10 \cdot \log \left[1 + (0.02 \cdot V_{Pkw})^3 \right]$$

$$L_{Lkw} = 23,1 + 12,5 \cdot \log[(V_{Lwk})]$$

con LLwk = livello acustico medio per 1 autovettura/ora

$$C = L_{Ikw} - L_{Pkw}$$

LPkw = livello acustico medio per 1 veicolo pesante/ora

Il fattore Croadsurface è stato assunto pari a 0 (non grooved asphalts, asphalt concrete) come il fattore Cgradient (nullo per pendenze inferiori al 5%)

Modello per la propagazione

Il livello sonoro al recettore deriva dai livelli sonori di tutte le sorgenti stradali.

Al valore calcolato si sommano 1,2 o 3 dB se il recettore si trova rispettivamente a 100, 70 o 40 metri da un semaforo (tanto più è vicina la distanza tanto maggiore è il contributo douto alle frenate ed alle accelerazioni).

Il metodo RLLS 90 permette il calcolo secondo due modalità distinte: nel caso di tratti rettilinei si considera la strada come un'unica sorgente, mentre quando ciò non è possibile si ricorre al procedimento frazionato.

Nel caso in esame si è utilizzato il metodo semplificato.

$$L_{\it m} = L_{\it ME} + C_{\it sectionlenght} + C_{\it spreading} + C_{\it groundabsorpion} + C_{\it screening}$$

con:

$$C_{\text{sectionlenght}} = 10 \cdot \log(l)$$

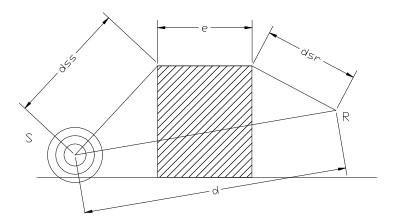
1 = lunghezza della sezione stradale entro il triangolo di ricerca

$$C_{spreading} = 11,2 - 20 \cdot \log d - \frac{d}{200}$$

d = distanza dall'asse della sezione stradale al recettore

$$C_{groundabsorption} = -4.8 + \frac{h_m}{d} \cdot \left(34 + \frac{600}{d}\right)$$

hm = altezza media sul terreno della linea che congiunge la sorgente al recettore


Il fattore Cscreening è calcolato in accordo con la teoria classica della riflessione e rifrazione del suono su schermi o barriere.

La schematizzazione del fenomeno di attenuazione è rappresentata in figura e l'indice di

$$C_{screening} = 10\log\left(3 + \frac{C_2}{\lambda}zK_w\right)$$

schermatura è dato dalla:

dove C2=20, l è la lunghezza d'onda alla frequenza di centro banda considerata e z è la differenza fra cammino rifratto e cammino diretto.

Implementazione del modello

Dai dati rilevati sono stati confrontato con quelli forniti dal modello di simulazione che ha come input i dati di traffico rilevati.

Confrontando i dati rilevati con le con gli output del programma di simulazione è stato possibile tarare il modello di cui sopra per poi procedere quindi alla previsione dello scenario futuro aggiungendo la quota di traffico indotto.

I dati forniti dal modello, confrontati con i rilievi fonometrici realmente effettuati, sono riportati di seguito

Punto di misura	Leq diurno misure [dB(A)]	Leq diurno da modello [dB(A)]	Differenza fra misure e dati modello
A	51,0	51,6	+0,6
В	54,3	53,5	-0,7

La discrepanza fra i dati forniti da modello e fra le misure è compresa in valore assoluto fra 0,6 e 0,7 dB; il fatto che le discrepanze siano sia negative che positive dimostra che non si è in presenza di un errore sistematico ma casuale (dovuta alla peculiarità delle situazioni ed alla variabilità delle condizioni durante i rilievi fonometrici soprattutto in relazione alle misure di breve durata).

Si può in conclusione ritenere attendibile la previsione dal modello così tarato.

La mappa di rumore relativa allo Stato di fatto e riportata in allegato

Sulla scorta dei dati forniti da un modello di simulazione dei flussi di traffico si è implementato il modello acustico riferito allo scenario futuro.

In assenza di dati derivanti da uno studio specifico si è ripartito il traffico indotto fra gli assi viari presenti (65% su SP28 e 35% su Via dei Pini); si osserva come il traffico indotto sulla Strada provinciale non determina variazioni critiche perché si è già in presenza di traffico sostenuto mentre su Via dei Pini l'incremento relativo è sicuramente di maggior rilievo ma senza determinare superamento dei valori limite di immissione in periodo diurno.

Per avere un quadro della ricaduta in termini di livelli sonori di questo Piano Attuativo si propone nella tabella seguente un confronto dei valori forniti da modello fra stato di fatto e progetto facendo riferimento ai recettori individuati in figura seguente

Punto di misura	Stato di fatto [dB(A)]	Scenario di Progetto [dB(A)]	Note
A	51,0/48,4	52,5/49,5	Incremento di 1,5 e 1 dB; dovuto a incremento traffico veicolare e a zone carico/scarico
В	54,3/48,1	55,3/49,8	Incremento di 1 e 1,7 dB; dovuto a viabilità di parcheggio

Tabella recettori sensibili – Periodo diurno

Punto di misura	Stato di fatto [dB(A)]	Scenario di Progetto [dB(A)]	Note
1	45,9	46,6	
2	53,5	54,4	
3	52,2	53,1	

Per quanto concerne il traffico indotto, come si evince dalla tabella sopra riportata, l'incremento generato dalla situazione di progetto come da Accordo di Piano è contenuto entro 3 dB(A); i valori previsti sono comunque inferiori ai valori limite di immissione per la Classe III

Complessivamente le variazioni di traffico che il progetto comporta generano dei livelli sonori compatibili con la situazione attuale e la classificazione del territorio in zone acustiche e quindi accettabili.

Le mappa di rumore relative, in scala 1 : 1000, sono riportate in allegato Mappa di rumore Ante Operam – periodo diurno Mappa di rumore Post Operam – periodo diurno

L.C.E. S.r.l. a Socio Unico Via dei Platani, 7/9 Opera (MI) T. 02 57602858 - www.lce.it - info@lce.it

Centro di Taratura LAT N° 068 Calibration Centre Laboratorio Accreditato di Taratura Accredited Calibration Laboratory

LAT Nº 068

Pagina 1 di 9 Page 1 of 9

CERTIFICATO DI TARATURA LAT 068 54377-A Certificate of Calibration LAT 068 54377-A

- data di emissione 2025-03-14 date of issue

 - cliente
 GUFFANTI ING, OLIVIERO

 customer
 22070 - FENEGRO' (CO)

 - destinatario
 GUFFANTI ING, OLIVIERO

 receiver
 22070 - FENEGRO' (CO)

Si riferisce a

Referring to

- oggetto Analizzatore

- costruttore NTi Audio

- modello XL2

- matricola serial number 3284

- data di ricevimento oggetto 2025-03-13

date of receipt of item
- data delle misure 2025-03-14

date of measurements

- registro di laboratorio Reg. 03

Il presente certificato di taratura è emesso in base all'accreditamento LAT N° 068 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 068 granted according to decrees connected with Italian Jaw No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and International standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le procedure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Direzione Tecnica (Approving Officer)

L.C.E. S.r.l. a Socio Unico Via dei Platani, 7/9 Opera (MI) T. 02 57602858 - www.lce.it - info@lce.it

Centro di Taratura LAT N° 068 Calibration Centre Laboratorio Accreditato di Taratura Accredited Calibration Laboratory

LAT Nº 068

Pagina 1 di 4 Page 1 of 4

CERTIFICATO DI TARATURA LAT 068 54376-A Certificate of Calibration LAT 068 54376-A

- data di emissione date of issue

- diente customer - destinatario receiver 2025-03-14

GUFFANTI ING. OLIMERO 22070 - FENEGRO' (CO) GUFFANTI ING. OLIMERO 22070 - FENEGRO' (CO)

Si riferisce a

Referring to - oggetto item

Calibratore

costruttore
 manufacturer

Brüel & Kiaer

- modello model

4230

- matricola

1558551

serial number - data di ricevimento oggetto

2025-03-13

date of receipt of item - data delle misure

2025-03-14

date of measurements

- registro di laboratorio laboratory reference

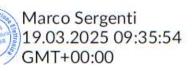
Reg. 03

Il presente certificato di taratura è emesso in base all'accreditamento LAT N° 068 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e a riferibilità delle tarature eseguite ai campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 068 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (SI).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.


I risultati di misura riportati nel presente Certificato sono stati ottenuti applicando le proœdure di taratura citate alla pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità del Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nel momento e nelle condizioni di taratura, salvo diversamente specificato.

The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.

Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltiplicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISC/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 95%. Normally, this factor k is 2.

Direzione Tecnica (Approving Officer)

L. C.E. S.r.l. a Socio Unico Via dei Platani, 7/9 Opera (MI) T. 02 57602858 - www.lce.it - info@lce.it

Centro di Taratura LAT N° 068 Calibration Centre Laboratorio Accreditato di Taratura

Accredited Calibration Laboratory

LAT Nº 068

Pagina 1 di 9 Page 1 of 9

CERTIFICATO DI TARATURA LAT 068 54969-A Certificate of Calibration LAT 068 54969-A

- data di emissione date of Issue - cilente OPERA SRL customer 20831 - SEREGNO (MI) receiver 20831 - SEREGNO (MI)

Fonometro

Reg. 03

SI riferisce a

Referring to - oggetto

item - costruttore Svantek - modello SVAN 959 - matricola

- matricola 12987 serial number - data di ricevimento oggetto

- data di noevimento oggetto date of receipt of Item 2025-06-11 date delle misure date of measurements 2025-06-12

registro di laboratorio
 laboratory reference

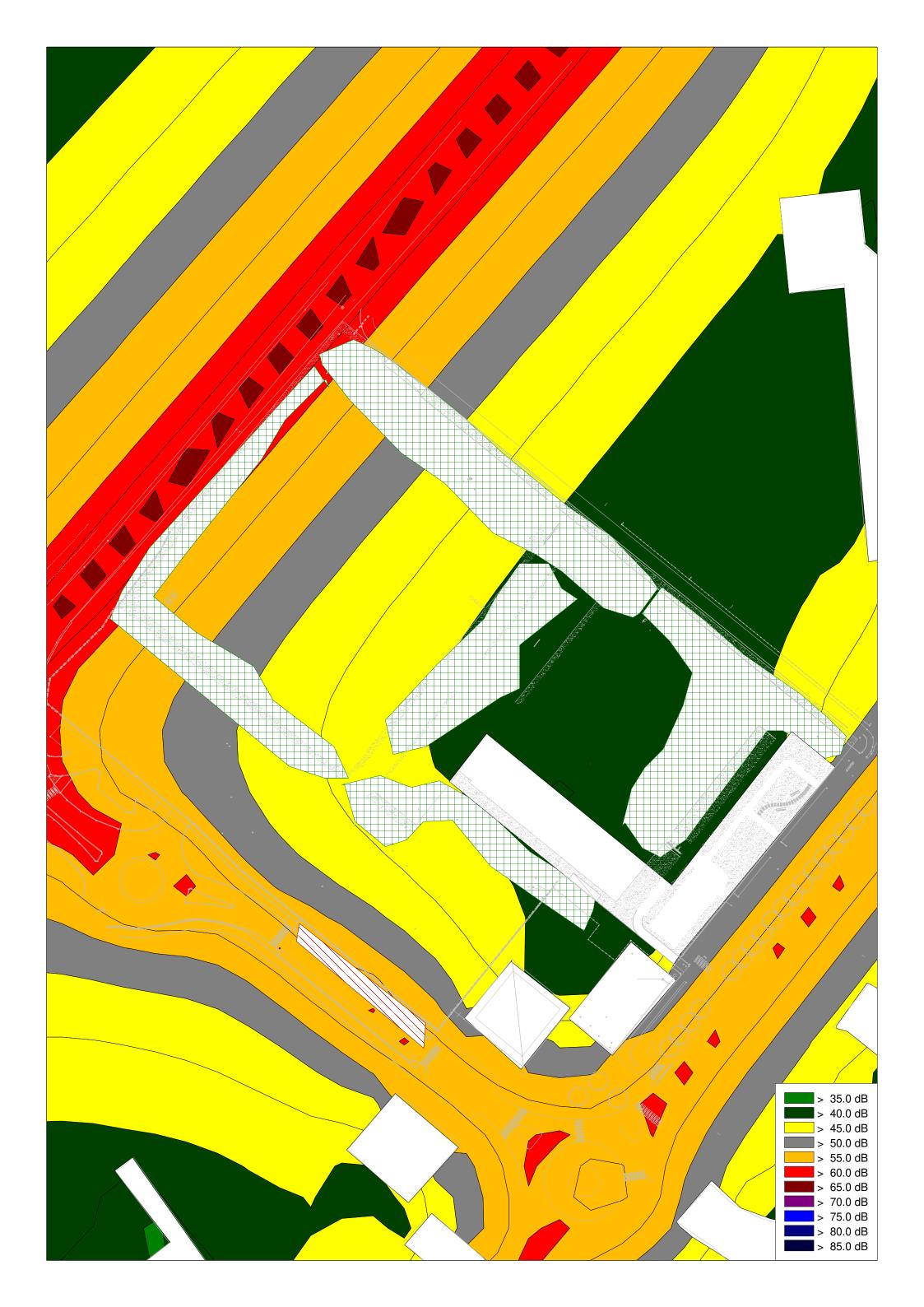
Il presente certificato di taratura e emesso in base all'accreditamento LAT N° 068 rilasciato in accordo ai decreti attuativi della legge n. 273/1991 che ha istituito Il Sistema Nazionale di Taratura (SNT). ACCREDIA attesta le capacità di misura e di taratura, le competenze metrologiche del Centro e la riferibilità delle tarature eseguite al campioni nazionali e internazionali delle unità di misura del Sistema Internazionale delle Unità (SI).

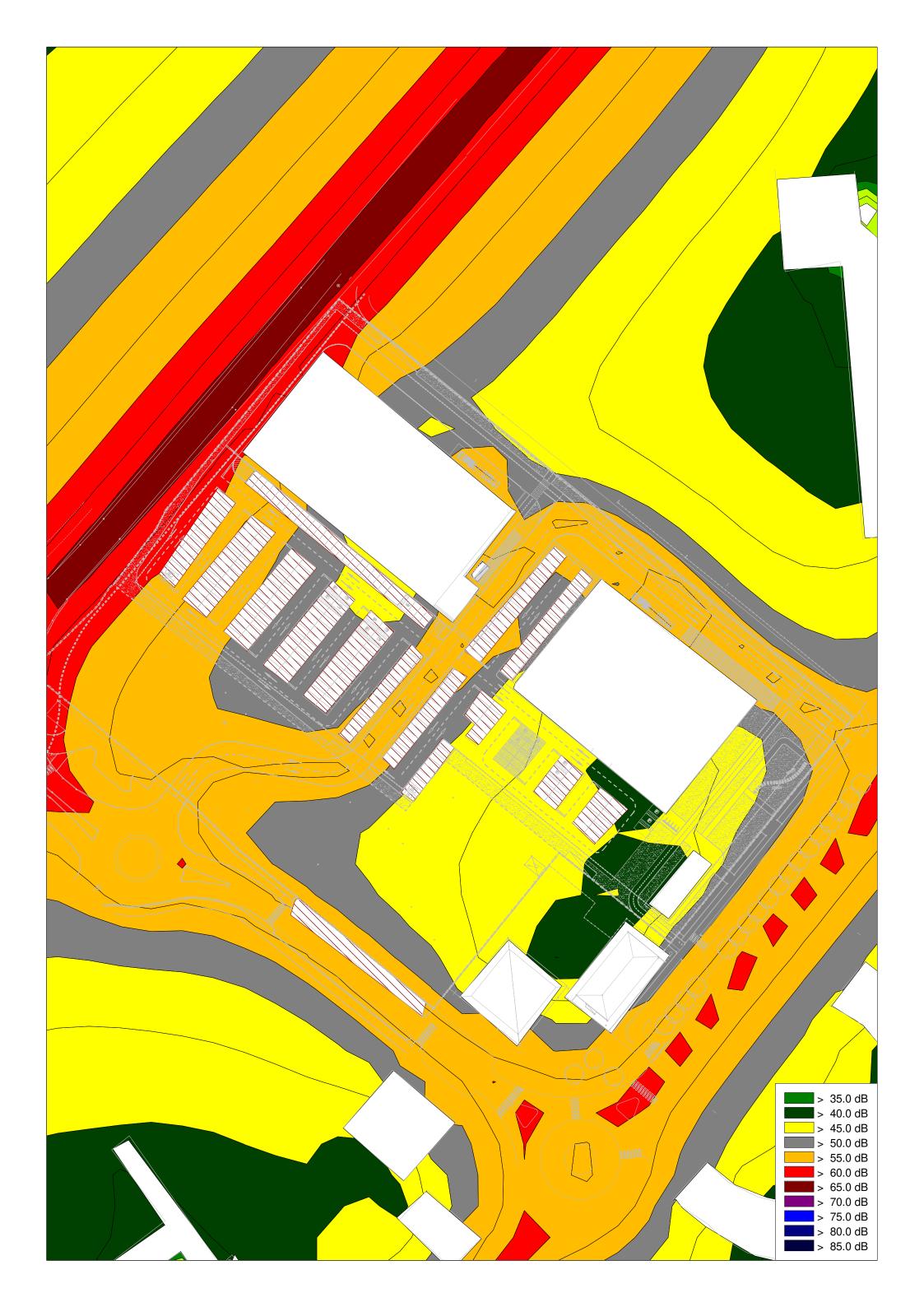
Questo certificato non può essere riprodotto in modo parziale, salvo espressa autorizzazione scritta da parte del Centro.

This certificate of calibration is issued in compliance with the accreditation LAT N° 055 granted according to decrees connected with Italian law No. 273/1991 which has established the National Calibration System. ACCREDIA attests the calibration and measurement capability, the metrological competence of the Centre and the traceability of calibration results to the national and international standards of the International System of Units (50).

This certificate may not be partially reproduced, except with the prior written permission of the issuing Centre.

I risultati di misura riportati nei presente Certificato sono stati ottenuti applicando le procedure di taratura citate alia pagina seguente, dove sono specificati anche i campioni o gli strumenti che garantiscono la catena di riferibilità dei Centro e i rispettivi certificati di taratura in corso di validità. Essi si riferiscono esclusivamente all'oggetto in taratura e sono validi nei momento e nelle condizioni di taratura, salvo diversamente specificato.


The measurement results reported in this Certificate were obtained following the calibration procedures given in the following page, where the reference standards or instruments are indicated which guarantee the traceability chain of the laboratory, and the related calibration certificates in the course of validity are indicated as well. They relate only to the calibrated item and they are valid for the time and conditions of calibration, unless otherwise specified.


Le incertezze di misura dichiarate in questo documento sono state determinate conformemente alla Guida ISO/IEC 98 e al documento EA-4/02. Solitamente sono espresse come incertezza estesa ottenuta moltipilicando l'incertezza tipo per il fattore di copertura k corrispondente ad un livello di fiducia di circa il 95 %. Normalmente tale fattore k vale 2.

The measurement uncertainties stated in this document have been determined according to the ISO/IEC Guide 98 and to EA-4/02. Usually, they have been estimated as expanded uncertainty obtained multiplying the standard uncertainty by the coverage factor k corresponding to a confidence level of about 98%. Normally, this factor k is 2.

Direzione Tecnica (Approving Officer)

