

# CENTRALE UNICA DI COMMITTENZA









### PROGETTO DEFINITIVO

OGGETTO: PROCEDURA APERTA AI SENSI DELL'ART. 183 COMMI DA 1 A 14 DEL D.Lgs. 50 DEL 18 APRILE 2016 PER L'AFFIDAMENTO DELLA CONCESSIONE DEL PROGETTAZIONE DEFINITIVA ED ESECUTIVA, COORDINAMENTO DELLA SICUREZZA IN FASE DI PROGETTAZIONE ED ESECUZIONE, DIREZIONE LAVORI, CONTABILITÀ, CONTO FINALE, REALIZZAZIONE E GESTIONE DEL NUOVO CIMITERO COMUNALE DA REALIZZARSI IN PROJECT FINANCING CON DIRITTO DI PRELAZIONE DA PARTE DEL PROPROMOTORE PG COSTRUZIONI SRL - BISIGNANO (CS) AI SENSI DELL'ART. 183, COMMA 15 DEL D.LGS. 50/2016

CIG: 7845517570

CUP F73J19000010007

### **STAZIONE APPALTANTE**

Centrale Unica di Committenza ACRI/BISIGNANO, Codice AUSA:0000551474 – Indirizzo: Via Roma N. 65 Città: Acri (CS)

### **PROGETTISTA**

Ing. Alessandro D'Alessandro,

### **GEOLOGO**

Dott. Geol. Gino Cofone

### **IMPRESA**

PG Costruzioni S.r.I.

R02

RELAZIONE GEOLOGICA

SCALA:

DATA: 03/06/2019

### **Indice**

| PREMESSA                                                                                       | 2  |
|------------------------------------------------------------------------------------------------|----|
| INQUADRAMENTO GEO-MORFOLOGICO GENERALE                                                         | 4  |
| INQUADRAMENTO SISMOTETTONICO<br>DEL SETTORE DI STUDIO                                          | 6  |
| INQUADRAMENTO DEL TERRITORIO COMUNALE DI<br>BISIGNANO NELL'AMBITO DEL PAI                      | 9  |
| CARATTERI GEOMORFOLOGICI E GEOLOGICI<br>DELL'AREA DI STUDIO                                    | 13 |
| STRATIGRAFIA DELL'AREA DI INTERESSE PROGETTUALE E<br>DEFINIZIONE DEL MODELLO GEOLOGICO-TECNICO | 17 |
| POTENZIALE DI LIQUEFAZIONE                                                                     | 21 |
| ZONA SISMICA                                                                                   | 22 |
| CONCLUSIONI                                                                                    | 26 |
| Allegato 1 (Prova penetrometrica dinamica Superpesante DPSH)                                   | 30 |
| Allegato 2 (prospezione sismica di tipo Masw)                                                  | 41 |
| Allegato 3 (Stendimento sismica rifrazione SR)                                                 | 53 |
| Allegato 4 (Rilievo con Drone)                                                                 | 64 |
| Allegato 5 (Analisi di stabilità)                                                              | 75 |

### **PREMESSA**

Su incarico ricevuto dalla Ditta PG COSTRUZIONI S.R.L., il sottoscritto Dott. Geol. Gino Cofone, iscritto all'ordine Regionale dei Geologi della Calabria con n°1066, ha redatto la presente relazione geologico-tecnica riguardante la "PROPOSTA DI PROGETTAZIONE ED ESECUZIONE DEI LAVORI DI COSTRUZIONE DEL NUOVO CIMITERO COMUNALE DI BISIGNANO NONCHE' DELLA GESTIONE FUNZIONA-LE ED ECONOMICA DELLO STESSO CON RISORSE TOTALMENTE A CARICO DEL SOGGETTO PROPONENTE – PROCEDURA DI PROJECT FINANCING – ART. 183 comma 15 D.LGS 50/2016" nel comune di Bisignano, provincia di Cosenza (fig.1).

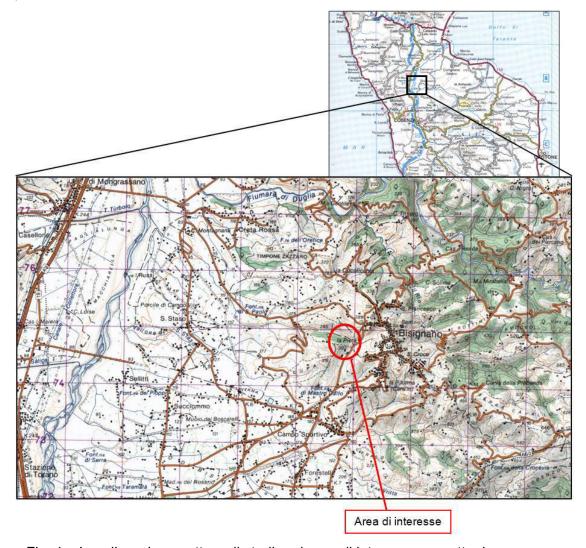



Fig. 1 – Localizzazione settore di studio ed area di interesse progettuale.

Il presente studio è finalizzato principalmente all'accertamento della fattibilità geomorfologica dell'intervento in oggetto ed alla definizione delle principali caratteristiche stratigrafiche, geotecniche e sismiche del sito, al fine di fornire, al tecnico incaricato della progettazione, utili indicazioni circa il dimensionamento e la profondità di attestazione del piano di posa delle strutture di fondazione.

Un accurato rilevamento geologico di superficie, esteso per un ambito geologicamente significativo, unitamente ad informazioni di carattere bibliografico ed all'interpretazione stereoscopica delle foto aeree ha consentito di definire i caratteri geologici e geomorfologici dell'area di studio.

Inoltre sono state eseguite delle indagini di tipo dirette e indirette, effettuate appositamente dallo scrivente per valutare la fattibilità geologica della proposta progettuale. In particolare sono state eseguite n°1 prova penetrometrica dinamica superpesante DPSH (AII. 1) la quale ha permesso di ottenere informazioni qualitative circa la consistenza e/o grado di addensamento dei tipi litologici costituenti il terreno fondazione.

Per la determinazione della Vs\_eq, e di conseguenza della Categoria di Suolo di fondazione, è stata eseguita n°1 prospezione sismica di tipo MASW (onde Vs) (All. 2).

Inoltre è stata eseguita **n°1** prospezione sismica di tipo **SR** (Sismica a rifrazione) (AII. 3) la quale si è dimostrata utile al fine di ricostruire la stratigrafia (opportunamente tarata con l'istogramma penetrometrico nella porzione superficiale) insieme alle osservazioni di superficie derivanti dal rilevamento geologico di campagna.

Per poter rilevare le condizioni geomorfologiche attuali dell'area è stato effettuato un rilievo di dettaglio con **Drone (All. 4)**, esteso per un ambito significativo rispetto all'area di intervento, il quale ha fornito la base cartografica aggiornata (dtm, dsm, curve di livello, ortofoto) utilizzata per ricostruire alcuni profili topografici ritenuti significativi e rappresentativi sottoposti a **Verifica di stabilità (All. 5)**.

I dati raccolti sono stati analizzati ed elaborati in studio, quindi utilizzati per la stesura della presente relazione, elaborata sulla base delle Norme Tecniche per le Costruzioni di cui al D.M. 17 Gennaio 2018.

### INQUADRAMENTO GEO-MORFOLOGICO GENERALE

L'area di studio ricade, da un punto di vista geologico, nella porzione centrosettentrionale del bordo orientale del graben del F. Crati il quale rappresenta una depressione tettonica d'età plio-quaternaria, caratterizzata dalla presenza di faglie normali ad andamento N-S (fig. 2).

Fig 2: Carta morfo-tettonica e delle Dgpv del bordo orientale del graben del Crati (da Tansi et al., 2005, mod.). In rosso è evidenziato il bordo occidentale della Sila (contesto geologico in cui ricade l'area di studio).

#### LEGENDA:

depositi olocenici (1);

conoidi di deiezione (2);

depositi del Pleistocene medio-sup.: depositi conglomeratici d'origine continentale (3);

depositi sabbioso-conglomeratico d'origine marina (4);

resti di antiche superfici d'erosione infrapleistoceniche (5):

depositi del Pliocene sup.-Pleistocene medio: sabbie e conglomerati (6);

argille siltose (7);

sabbie e arenarie (8);

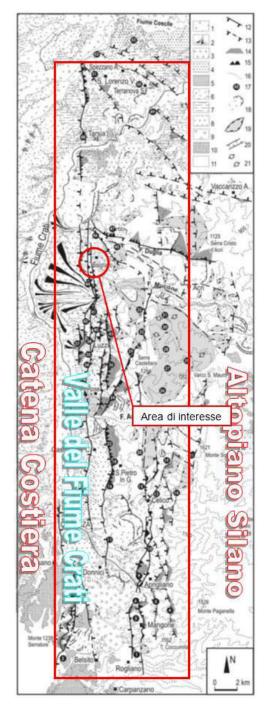
conglomerati rossastri (9);

depositi alto-miocenici (10);

substrato pre-miocenico (11);

faglia normale molto recente o attiva (12);

faglia normale recente (13);


scarpata di faglia cumulativa (14); faccette triangolari o trapezoidali (15); limite stratigrafico (16);

stazione di misura mesostrutturale (17); grande frana (18);

cuneo da accomodamento tettonogravitativo (19);

trincea (20);

espansione laterale (21).



Il settore in oggetto presenta una forma allungata che tende ad allargarsi sensibilmente verso nord, delimitata da faglie ad andamento WNW-ESE e, in subordine, NE-SW e N-S (LANZAFAME & TORTORICI, 1981; TORTORICI, 1981; TURCO et alii, 1990; CATALANO et alii, 1993).

Il sistema WNW-ESE (campo di variabilità: N100E-N140E) è ereditato da una preesistente fascia trascorrente sinistra, di rilevanza regionale («linea del Pollino», BOUSQUET, 1973) che si è sviluppata al confine tra Calabria e Lucania (CATALANO et alii, 1993) durante il Pleistocene inf.-medio (DEWEY et alii, 1989; MONACO et alii, 1995). Durante le fasi estensionali tardo-Pleistoceniche, le suddette faglie hanno subito riattivazioni «in normale» (LANZAFAME & TORTORICI, 1981; MONACO & TANSI, 1992).

Il sistema di faglie normali NE-SW è morfologicamente meno evidente e trova la sua massima espressione nella Linea di Sangineto (AMODIO-MORELLI et alii, 1976) che borda a NW il graben del Crati. LANZAFAME & TORTORICI (1981) attribuiscono un importante ruolo geodinamico a tale struttura: la formazione del bacino del Crati viene infatti attribuita all'attività di trascorrenza sinistra della Linea di Sangineto. Anche le faglie appartenenti al sistema NE-SW sono state «riprese» dalla tettonica quaternaria connessa con la fase estensionale tardiva (LANZAFAME & TORTORICI, 1981) (fig. 2).

Il sistema di faglie orientate N-S è quello più recente, sono per lo più normali, e ribassanti a gradinata verso il F. Crati; culminano per rigetti ed estensione, rispettivamente, con le direttrici «San Marco Argentano-San Fili» e «Rogliano-Bisignano» (fig. 2). Le faglie appartenenti al sistema N-S sono connesse ad una fase tettonica distensiva, con assi di estensione massima orientati ESE-WNW, perdurata dal Pliocene sup. fino a tutto il Pleistocene (LANZAFAME & TORTORICI, 1981), particolarmente intensa dal Pleistocene medio, e tuttora attiva (GASPARINI et alii, 1982; GUERRA, 1986; TORTORICI et alii, 1995).

I depositi di riempimento del graben del Crati sono costituiti da una successione conglomeratico-sabbioso-argillosa (di spessore complessivo pari a 1100 m, solo in parte affiorante), riferibile a un ciclo sedimentario marino del Pliocene sup.-Pleistocene inf., su cui giacciono in discordanza depositi di fan-delta ghiaioso-sabbiosi (COLELLA

5

et alii, 1987) del Pleistocene medio, nonché depositi alluvionali attuali del F. Crati e dei suoi principali tributari (fig. 2). Il substrato pre-pliocenico dell'area di studio è costituito da rocce cristallino-metamorfiche, appartenenti all'Arco Calabro-Peloritano (AMODIO-MORELLI et alii, 1976).

Lungo i corsi d'acqua, è evidente l'azione di trasporto e deposito dei materiali presi in carico dall'erosione s.l., con accumuli in forma di conoidi anche di cospicue dimensioni. In particolare, alla confluenza del F. Mucone con il F. Crati, una conoide di dimensioni considerevoli determina una netta deviazione, verso la sinistra idrografica, del corso del F. Crati (fig. 2).

### INQUADRAMENTO SISMOTETTONICO DEL SETTORE DI STUDIO

Relativamente all'intera valle del Crati, sono stati definiti i caratteri della sismicità crostale (profondità < 50 km) dall'insieme dei terremoti strumentali e storici. I caratteri della sismicità strumentale sono stati desunti da INGV (2002), MORETTI et alii (1990), GUERRA (1986) e GUERRA & COREA (1989). In figura 3 sono confrontati i caratteri della sismicità strumentale e storica con le faglie attive e recenti, riconosciute da TORTORICI et alii (1995) e da TANSI et alii, 2005, lungo il bordo orientale del graben del Crati. È stata considerata la distribuzione degli epicentri strumentali di sismi di magnitudo ≥ 3.0, secondo i dati INGV (2002) relativi al periodo 1983-2002. Gli epicentri macrosismici sono stati desunti da BOSCHI et alii (1995). Dal confronto faglie-sismi, si evince come gli epicentri tendano a distribuirsi prevalentemente lungo le faglie del sistema N-S che strutturano il bordo occidentale dell'Altopiano Silano.

Riguardo ai caratteri della sismicità storica, il graben del Crati è stato interessato da sei terremoti di intensità massima compresa tra IX e X MCS: di questi, cinque presentano aree epicentrali localizzate lungo il suo bordo orientale. Fa eccezione l'evento del 1184, ubicato in corrispondenza delle faglie che strutturano il margine occidentale del graben (e di più incerta localizzazione, per l'epoca assai remota), ed il terremoto del 1638 con area epicentrale nella Valle del Savuto.

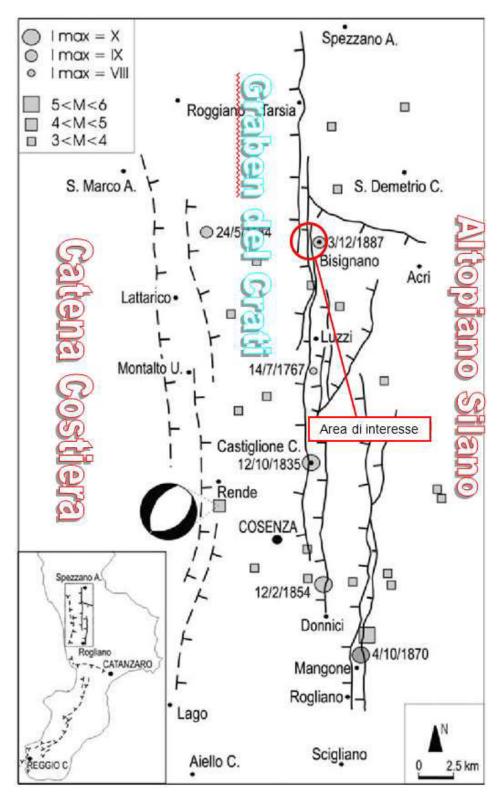



Fig. 3 - Caratteri sismotettonici del graben del F. Crati. Sono rappresentati gli epicentri dei terremoti storici e strumentali (profondità < 35 km) significativi, e le faglie attive e recenti lungo i bordi occidentale (in tratteggio; da: Tortorici et al., 1995) ed orientale (linea continua, secondo Tansi et. al, 2005) del graben.

Dalla distribuzione temporale di tali eventi, si evince che la maggior parte di essi si è verificata in un arco temporale di 120 anni. In particolare, gli epicentri dei tre eventi tellurici più intensi, occorsi nel 1835, 1854 e 1870 (che nel complesso causarono circa 800 vittime), risultano distribuiti nella porzione centro-meridionale dell'area considerata, con progressiva migrazione verso sud (fig. 4).

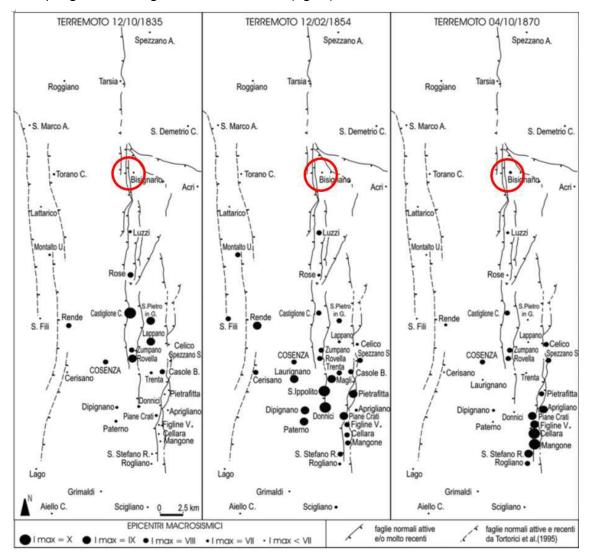



Fig. 4 - Aree macrosismiche dei terremoti degli anni 1835, 1854 e 1870. Sono inoltre rappresentate le faglie attive o molto recenti, lungo il bordo occidentale (in tratteggio, da Tortorici et al., 1995) ed orientale (linea continua, secondo Tansi et al. 2005) del graben del Crati.

Le zone di massimo risentimento associate a tali eventi si allineano lungo alcune delle faglie, appartenenti al sistema N-S. In particolare, i terremoti del 1835 e del 1854 sembrerebbero associati, rispettivamente, ai tratti mediano e meridionale della

direttrice «Donnici-San Pietro in Guarano-Luzzi». L'area macrosismica associata al terremoto del 1870 appare associata alla porzione più meridionale della direttrice «Rogliano – Celico - Serra Castellara ».

Infine, riguardo ai caratteri della sismicità storica, esaminando le modalità di liberazione dell'energia sismica negli ultimi 400 anni nell'Arco Calabro, GUERRA (1986) ha evidenziato che mentre in Calabria meridionale il rilascio energetico è sostanzialmente concentrato in due brevi periodi (1783 e 1905-08), in Calabria settentrionale esso è avvenuto in maniera più continua e mediamente meno intensa, attraverso una serie più numerosa di eventi meno violenti.

### INQUADRAMENTO DEL TERRITORIO COMUNALE DI BISIGNANO NELL'AMBITO DEL PAI

Il Piano di Assetto Idrogeologico (PAI), che riguarda tutto il territorio regionale, comprende le aree in frana e quelle alluvionali; esso rappresenta la sintesi di vari studi effettuati sul campo e di tutte le banche dati esistenti in materia, fra cui, in particolare, il censimento delle aree calabresi storicamente colpite da frane ed inondazioni (fonte: progetto Avi C.N.R. – Gruppo Nazionale per la Difesa delle Catastrofi Idrogeologiche, versione 1.2 dicembre 1998); il censimento delle aree calabresi storicamente colpite da frane ed inondazioni (fonte: Archivi di Stato – PROGETTO Telcal - azione progettuale Amministrazione regionale, progetto pilota, banca dati territoriale, versione 1.0 dicembre 2000); il censimento delle aree ad elevato rischio idrogeologico (D.L. 180); la ricerca effettuata direttamente dal personale tecnico della Autorità di bacino della Regione Calabria.

Il PAI costituisce dunque, il primo stralcio tematico e funzionale redatto dall'Autorità di Bacino della Regione Calabria (di seguito ABR); ha valore di Piano Territoriale di Settore ed è lo strumento conoscitivo, normativo e tecnico-operativo mediante il quale sono pianificate e programmate le azioni e le norme d'uso riguardanti la difesa dal rischio idraulico e idrogeologico nel territorio di competenza dell'ABR della Calabria. Il Piano ha la funzione di eliminare, mitigare o prevenire i maggiori rischi derivanti da

fenomeni calamitosi di natura geomorfologica (dissesti gravitativi dei versanti) o di natura idraulica (esondazioni dei corsi d'acqua). In particolare esso perimetra le aree a maggior rischio idraulico e idrogeologico per l'incolumità delle persone, per i danni funzionali agli edifici e alle infrastrutture con conseguente inagibilità degli stessi, per l'interruzione di funzionalità delle strutture socioeconomiche e per i danni al patrimonio ambientale e culturale, nonché gli interventi prioritari da realizzare e le norme di attuazione relative alle suddette aree.

Sulla base del livello di rischio dei fenomeni di frana rilevati, il PAI disciplina l'uso del territorio in tali aree in relazione alle seguenti classi di cui all'Atto di indirizzo e coordinamento per l'individuazione e la perimetrazione delle aree a rischio idrogeologico (DM 29/09/1998) ed alle specifiche tecniche adottate dalla Regione Calabria e specificatamente contrassegnate dalle sigle R4, R3, R2, R1.

Facendo riferimento a quanto contenuto nel PAI, e più precisamente alla "Carta delle frane relative alle infrastutture" del Comune di Bisignano si evince che parte del territorio è interessata da movimenti franosi di varia tipologia e cinematica, che però non interessano direttamente l'area di interesse progettuale per cui la stessa è esente da rischio frana (fig. 5).

Facendo riferimento alla "Carta delle Aree a Rischio idraulico", (redatta sulla base di documenti storici, modelli idraulici e rilievi in sito), risulta che l'area di interesse non ricade in zona a rischio idraulico (fig. 6).

Proposta di progettazione ed esecuzione dei lavori di costruzione del nuovo cimitero comunale di Bisignano nonche' della gestione funzionale ed economica dello stesso con risorse totalmente a carico del soggetto proponente – procedura di project financing – art. 183 comma 15 d.lgs 50/2016

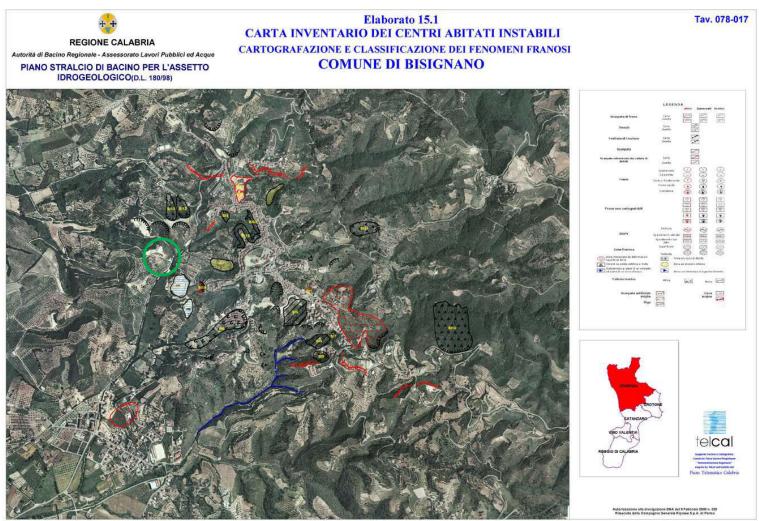



Fig. 5 - Cartografia P.A.I. (2001): Carta inventario delle frane relativa al comune di Bisignano (il cerchio verde indica l'area di studio).

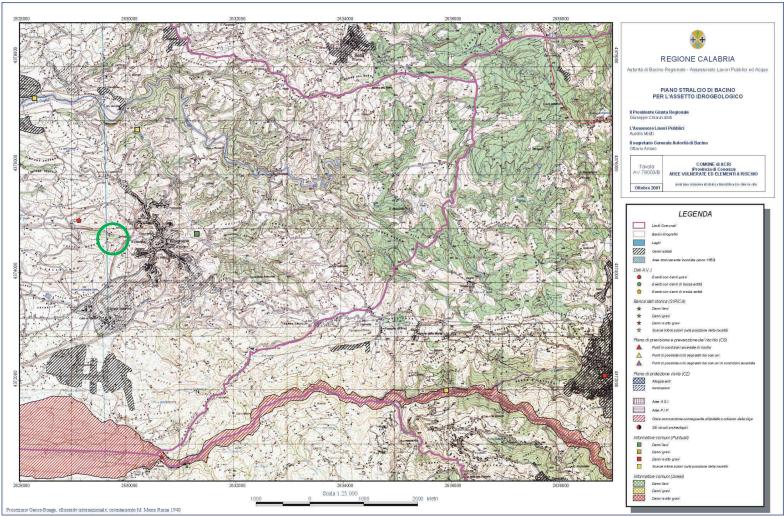



Fig. 6 – Estratto della cartografia del PAI: perimetrazione aree a rischio idraulico (il cerchio verde indica l'area di studio).

### CARATTERI GEOMORFOLOGICI E GEOLOGICI DELL'AREA DI STUDIO

Da un punto di vista geomorfologico, l'area oggetto di studio, è posta in una zona prettamente collinare, (alla quota di circa 260 metri s.l.m.) <u>ed in particolare su una zona pianeggiante generata antropicamente ovvero derivante dallo sfruttamento di una cava di inerti a cielo aperto, protratta nel corso degli anni, ed attualmente non più in uso in quanto già sfruttata ed esaurita (fig. 7).</u>

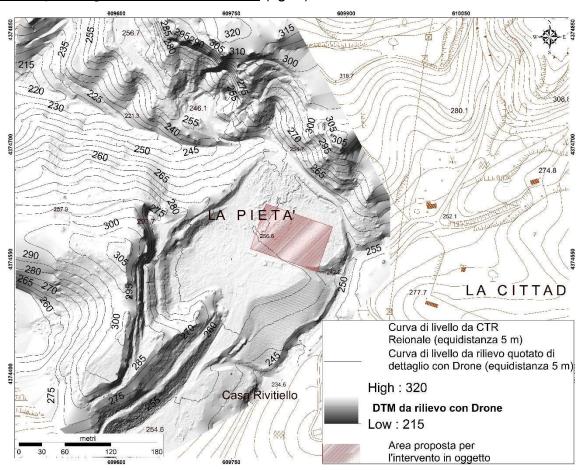



Fig. 7 – Corografia relativa all'area di studio.

La morfologia generale dell'area è strettamente legata a processi erosivi, sia di tipo areale che lineare, condizionati nel loro evolversi, oltre che dalle caratteristiche litologiche dei terreni affioranti, anche dall'assetto geo-strutturale. Si possono riconoscere, due tipi di paesaggio che si differenziano in base alle classi di pendenza

che caratterizzano i versanti: nelle porzioni sommitali, nelle concavità morfologiche e nelle aree soggette a modellamento antropico la morfologia si presenta meno aspra con zone meno acclivi e pendenze che si assestano intorno ai 0%-20%; nella restante porzione dell'area considerata, dove le sabbie Plioceniche sono più cementate, la morfologia si presenta piuttosto aspra e con versanti che presentano inclinazioni del 35%-50% e >50% (fig. 8).

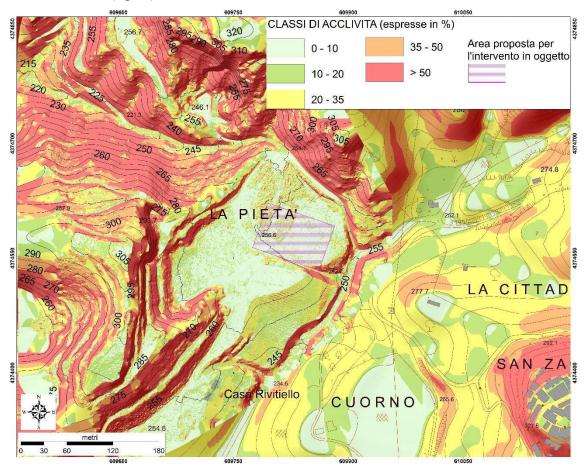



Fig. 8 – Carta della pendenza (espressa in classi %) relativa all'area di studio.

L'assetto geologico della zona è caratterizzato da depositi marini del Pliocene superiore, in particolare costituiti da **Sabbie ed arenarie tenere, con intercalazioni limose e talora conglomeratiche, a stratificazione incrociata** (fig.9).

Il basamento sismico, invece, è costituito da metamorfiti di medio-alto grado che derivano da una originaria associazione sedimentaria con una storia metamorfica complessa sviluppatasi a partire dal pre-ercinico (Zanettin Lorenzoni, 1980) fino

all'alpino, intruse da rocce granitoidi e filoni pegmatitici. Tali rocce non si rinvengono in affioramento (nella porzione di studio) ma dai dati di letteratura, e da indagini consultate ed effettuate in aree limitrofe, tali rocce sono riscontrabili a profondità maggiori di 100m dal piano campagna.

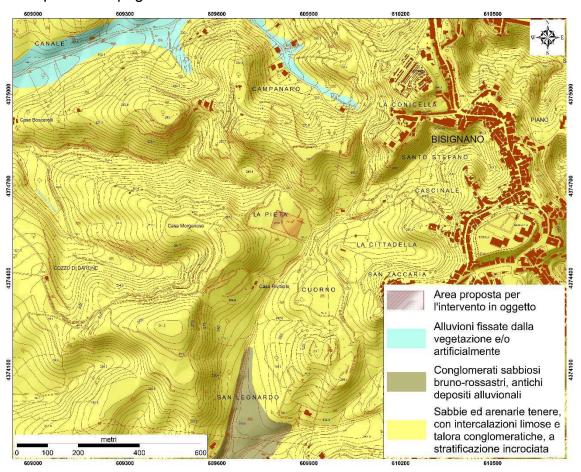



Fig. 9 – Carta geologica relativa all'area di studio ed estesa per un abito significativo.

Sotto l'aspetto idrogeologico, il sito in esame non presenta falde superficiali. In tal modo le acque che interessano l'area suddetta sono quelle che vi giungono per precipitazione meteorica. Esso è costituito da litotipi sciolti rappresentati granulometricamente da sabbia limosa ghiaiosa la quale favorisce la penetrazione delle acque in profondità. Va comunque evidenziato che l'eventuale presenza di livelli e/o lenti limoargillose può consentire modesti, oltre che temporanei, accumuli idrici sospesi a basse profondità. Tuttavia la profondità della falda permanente non è tale da implicare effetti negativi sulla morfogenesi dell'area esaminata.

In base ad una serie di sopralluoghi effettuati sul territorio in esame e, unitamente allo studio delle foto aeree (volo IGM scala 1:33.000, del 1991), non si segnalano movimenti gravitativi in atto o potenziali direttamente interessati il sito di interesse progettuale. Tuttavia uno studio condotto dalla Provincia di Cosenza per l'aggiornamento del Programma di Previsione e Prevenzione dei Rischi (P.P.P.R.) riporta, sui versanti limitrofi all'area individuata, delle zone ad erosione intensa e delle zone franose superficiali attive (Fig. 10).

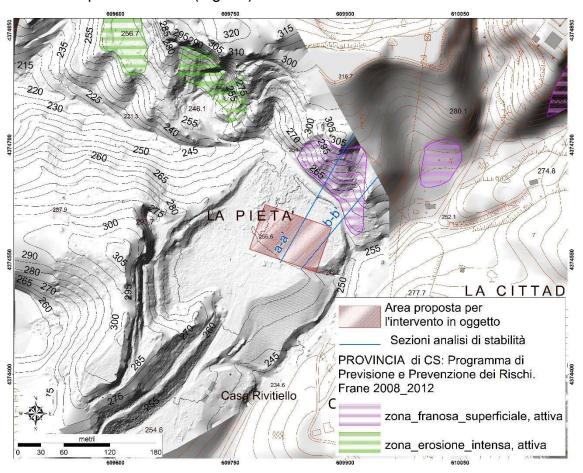



Fig. 10 – Carta relativa all'area di studio delle Frane 2008\_2012 cartografate dalla PRO VINCIA di CS nel Programma di Previsione e Prevenzione dei Rischi.

Tali elementi comunque risultano distanti dall'area proposta per l'intervento in progetto ed in particolare la più vicina "zona franosa superficiale, attiva" (posta a nord-est) risulta distare, dalla base della stessa al più vicino spigolo dell'area proposta, oltre i 20m (stessa larghezza posta dal PAI Calabria per individuare la fascia d'influenza esterna rispetto all'area in frana).

Cautelativamente la porzione di versante sopra descritta è stata sottoposta a **Verifica di stabilità (All. 5)** su 2 sezioni (a-a' & b-b') le cui tracce sono riportate in figura 10.

### STRATIGRAFIA DELL'AREA DI INTERESSE PROGETTUALE E DEFINIZIONE DEL MODELLO GEOLOGICO-TECNICO

Da quanto rilevato in affioramento è emerso la presenza di depositi sabbioso - limosi – ghiaiosi con locale stratificazione incrociata ed intercalazioni di lenti e/o livelli di natura conglomeratica (fig. 11). In superficie si rinviene, localmente e soprattutto nelle aree depresse e di fondovalle, una coltre di terreno più degradato ed alterato (dai processi esogeni) che può essere assimilato ad una copertura detritica.



Fig. 11 – Foto del versante a Nord-Est dell'area soggetta a proposta di intervento (in basso è evidente la stratificazione incrociata) rappresentativa del litotipo affiorante.

Dallo studio della bibliografia geologica e della cartografia ufficiale, si è riscontrato che tali litotipi affiorano estesamente in tutta la Valle del Crati con spessori fino ai 200 m. Al fine di poter ricostruire la stratigrafia di dettaglio dell'area di interesse ed avere informazioni circa le principali caratteristiche geotecniche dei terreni costituenti il sito di fondazione, sono state eseguite n°1 prova penetrometrica dinamica superpesante

(mediante penetrometro Modello DPSH73SM prodotto dalla GeoDeepDrill s.r.l.), n°1 prospezione sismica MASW e n°1 Sismica a Rifrazione effettuate nell'area oggetto di intervento e la cui ubicazione è riportata in figura 12.

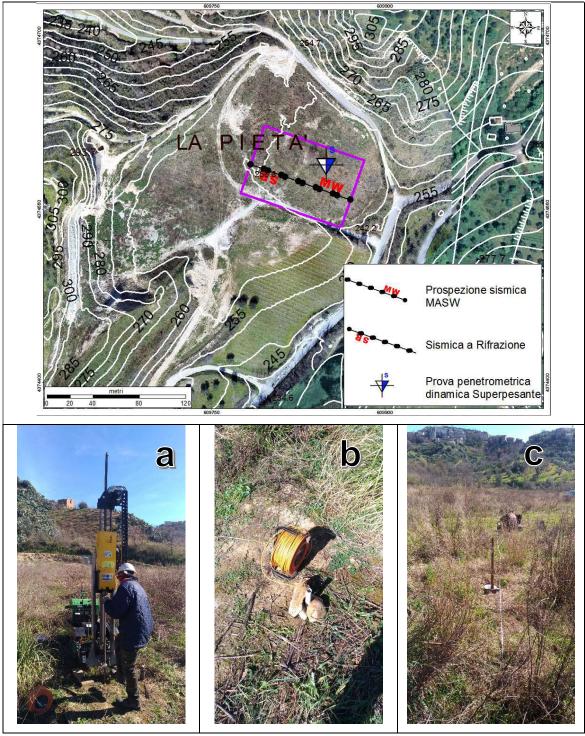
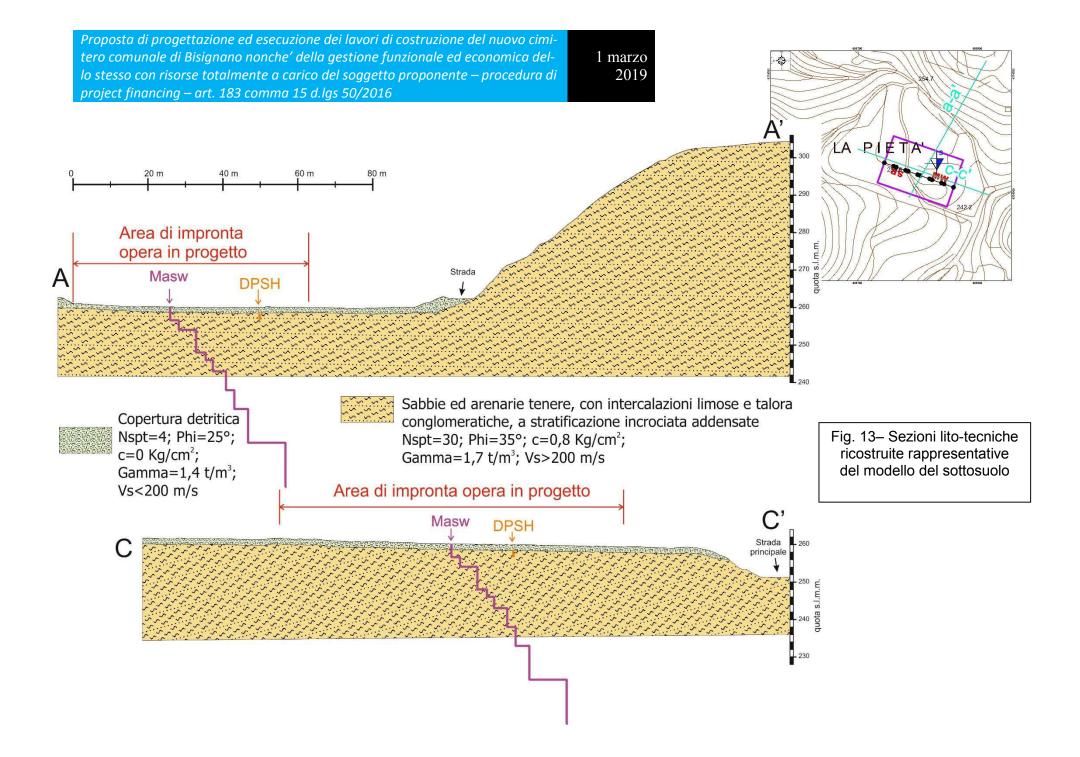



Fig. 12 – Ubicazione delle indagini effettuate. a) DPSH; b) tubo piezometrico installato n foro della DPSH con posa fino alla profondità della prova; c) Stendimento sismico MASW-SR.

L'insieme dei dati raccolti ha permesso di ricostruire le sezioni lito-tecniche rappresentative del sito di interesse progettuale (fig. 13). In particolare la prova penetrometrica dinamica (AII. 1) ha fornito, in aggiunta alle indicazioni derivanti dai rilievi di superficie, importanti indicazioni, lungo la verticale, circa lo spessore, la giacitura dei terreni e la consistenza (grado di addensamento) dei geomateriali più superficiali, mentre il profilo di velocità ricavato dalle VS con prospezione sismica di tipo MASW (AII. 2) ha contribuito a precisare le sezioni lito-tecniche negli strati più profondi unitamente ai risultati della Sismica a Rifrazione (AII. 3).

Da tali sezioni si osserva uno spessore, dell'ordine dei 2,5 metri di terreno di copertura detritica, per poi arrivare al livello sottostante delle Sabbie ed arenarie tenere (con intercalazioni limose e talora conglomeratiche) le quali presentano caratteristiche geotecniche che migliorano via via con la profondità (fig. 13).


Per quanto riguarda i principali parametri geotecnici caratteristici di tali geo-materiali (ricavati empiricamente dalle indagini dirette effettuate in situ ed allegate alla presente relazione) possono essere assunti i seguenti valori:

### 1. Copertura detritica

Nspt=4; Phi=25°; c=0 Kg/cm2; Gamma=1,4 t/m3; Vs<200 m/s

### 2. Sabbie ed arenarie tenere con intercalazioni limose e talora conglomeratiche

Nspt=30; Phi=35°; c=0,8 Kg/cm2; Gamma=1,7 t/m3; Vs>200 m/s



### POTENZIALE DI LIQUEFAZIONE

Con il termine "liquefazione" si indicano vari fenomeni fisici (liquefazione ciclica, mobilità ciclica, fluidificazione), osservati nei depositi e nei pendii sabbiosi saturi durante i terremoti forti (M > 5.5), che hanno come elemento comune il fatto che, per effetto dell'instaurarsi di condizioni non drenate, si ha un incremento ed un accumulo delle pressioni interstiziali che può provocare una drastica caduta della resistenza al taglio e quindi una perdita di capacità portante del terreno (Crespellani et al., 2012).

### Le **condizioni predisponenti** sono:

- terreni sabbiosi;
- profondità della falda < 15 m;</li>
- Accelerazioni massime in superficie PGA (Peak Ground Acceleration) > 0.1 g.

Tra i fattori geologici e geotecnici risultano fondamentali, l'assenza di cementazione fra i grani, l'origine e l'età del deposito, la presenza di strati drenanti grossolani intercalati alla sabbia fine liquefacibile, la granulometria (D50, U, CF, forma dei grani) ecc.

Da questa breve descrizione teorica sul significato e sul verificarsi del fenomeno della liquefazione, le condizioni rilevate nel sito in esame quali la presenza di materiale ben assortito dal punto di vista granulometrico (con la presenza di litotipi a granulometria da medio-fine a medio-grossolana) <u>implicano l'esclusione del verificarsi di tali fenomeni anche in caso di notevole sollecitazione ciclica</u>.

Inoltre se consideriamo il Criterio di Youd e Perkins (1978), il quale rappresenta un metodo qualitativo di rapida e semplice applicazione per la valutazione del potenziale di liquefazione (sulla base del tipo di deposito sedimentario e della sua età, viene fornita un indicazione qualitativa del grado di vulnerabilità del deposito stesso), come riportato nella descrizione geologica, i depositi del sito in esame (successione sedimentaria marina e transizionale) possono essere considerati come "spianate e terrazzi marini" d'età pleistocenica, e come ricavabile dalla figura 14 il sito si colloca in un campo di basso grado di vulnerabilità a liquefazione.

| Tipo deposito                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Età del deposito |                      |             |                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------------|-------------|-----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <500 anni        | Olocene              | Pleistocene | Pre-Pleistocene |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Depositi continental | i .         |                 |
| Canali fluviali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Molto alta       | Alta                 | Bassa       | Molto bassa     |
| Pianure di<br>esondazione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Alta             | Moderata             | Bassa       | Molto bassa     |
| Pianure e conoidi<br>alluvionali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Moderata         | Bassa                | Bassa       | Molto bassa     |
| Spianate e terrazzi<br>marini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  | Bassa                | Molto bassa | Molto bassa     |
| Deltaid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Alta             | Moderata             | Bassa       | Molto bassa     |
| Lacustri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Alta             | Moderata             | Bassa       | Molto bassa     |
| Colluvioni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Alta             | Moderata             | Bassa       | Molto bassa     |
| Scarpate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bassa            | Bassa                | Molto bassa | Molto bassa     |
| Dune                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Alta             | Moderata             | Bassa       | Molto bassa     |
| Loess                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Alta             | Alta                 | Alta        | Molto bassa     |
| Glaciali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bassa            | Bassa                | Molto bassa | Molto bassa     |
| Tuff                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bassa            | Bassa                | Molto bassa | Molto bassa     |
| Tephra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alta             | Alta                 | ?           | ?               |
| Terreni residuali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bassa            | Bassa                | Molto bassa | Molto bassa     |
| Sebkha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Alta             | Moderata             | Bassa       | Molto bassa     |
| The same of the sa |                  | Zone costiere        |             |                 |
| Deltaid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Molto alta       | Alta                 | Bassa       | Molto bassa     |
| Di estuario                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Alta             | Moderata             | Bassa       | Molto bassa     |
| Di spiaggia con<br>elevata energia<br>delle onde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Moderata         | Bassa                | Molto bassa | Molto bassa     |
| Di spiaggia con<br>bassa energia<br>delle onde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Alta             | Moderata             | Bassa       | Molto bassa     |

Fig. 14– Criterio di Youd e Perkins (1978) per identificare il grado di vulnerabilità a liquefazione.

### **ZONA SISMICA**

Come riportato nella nuova Normativa Sismica "Primi elementi in materia di criteri generali per la classificazione sismica del territorio nazionale e di normative tecniche per le costruzioni in zona sismica" (Ordinanza n 3274 del 20/03/2003 e successive modifiche, ecc.), il territorio nazionale viene suddiviso in zone sismiche, ciascuna contrassegnata da un diverso valore del parametro  $\mathbf{a}_{g}$ =accelerazione orizzontale massima su suolo di categoria A.

I valori di a<sub>g</sub>, espressi come frazione dell'accelerazione di gravità g, da adottare in ciascuna delle zone sismiche del territorio nazionale sono riportati nella seguente

### tabella:

| Zona | Valore di a <sub>g</sub> |
|------|--------------------------|
| 1    | 0,35g                    |
| 2    | 0,25g                    |
| 3    | 0.15g                    |
| 4    | 0.05g                    |

Il comune di Bisignano ricade nella <u>Zona 1</u>, della nuova Normativa sismica, caratterizzata da valori di accelerazione orizzontale superiori a 0,25 (fig. 15 & fig. 16). Ai fini della definizione dell'azione sismica di progetto è stata definita la categoria del profilo stratigrafico del suolo di fondazione, come specificato nella BOZZA di testo dell'Allegato 2, della nuova Normativa sismica (aggiornamento 9/9/04).

In riferimento alla NTC 2018, ai fini della definizione dell'azione sismica di progetto, si rende necessario valutare l'effetto della risposta sismica locale, per tale definizione si può fare riferimento a un approccio semplificato, che si basa sull'individuazione di cinque categorie di sottosuolo di riferimento (A, B, C, D, E), da individuare in relazione ai valori della velocità equivalente di propagazione delle onde di taglio, VS,eq (in m/s). Per depositi con profondità H del substrato superiore a 30 m, come nel caso in oggetto, la velocità equivalente delle onde di taglio VS,eq è definita dal parametro VS30, ottenuto ponendo H=30 m e considerando le proprietà degli strati di terreno fino a tale profondità.

Per ricavare la categoria di suolo è stata effettuata una M.A.S.W (**All. 2**), ed il profilo di velocità, delle VS in profondità, ha contribuito a precisare la sezione lito-tecnica riportata in figura 13.

I dati sismici acquisiti (sondaggi sismici di tipo MASW) hanno evidenziato che la profondità H del substrato è superiore ai 30m per cui la categoria di sottosuolo è riconducibile ad un suolo di fondazione di tipo C: "Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consistenti, con spessori superiori a 30 m, caratterizzati da un graduale miglioramento delle proprietà meccaniche con la profondità e da valori di Vs 30 compresi tra 180 m/s e 360 m/s".



### Presidenza del Consiglio del Ministri Dipartimento della protezione civile Ufficio prevenzione, valutazione e mitigazione del rischio sismico

### Classificazione sismica al 2010

Recepimento da parte delle Regioni e delle Province autonome dell'Ordinanza PCM 20 marzo 2003, n. 3274.

Atti di recepimento al 31 marzo 2010. Abruzzo: DGR 29/3/03, n. 438. Basilicata: DGR 19/11/03, n. 731. Calabria: DGB 10/2/04, n. 47. Campania: DGR 7/11/02, n. 5447.

Emilia Romagna: DGR 21/7/03, n. 1305. Finili Venezia Guilia: DGB 1/8/03, n. 2325. Lazio: DGR 22/5/09, n. 387. Liguria: DGR 2/11/03, n. 1305. Cenberdia: DGR 7/11/03, n. 14964.

Marche: DGR 29/7/03, n. 1046. Molise: LR 20/5/04, n. 13. Plemonte: DGR 19/01/10, n. 13058-790. Puglia: DGR 2/3/04, n. 153. Sardegna: DGR 30/3/04, n. 15/31.

Sicilia: DGR 19/12/03, n. 408. Toscana: DGR 16/6/03, n. 604. Trentine Alto Adigo: Boltzano, DGP 6/11/06, n. 4047; Trento, DGP 23/10/03, n. 2813. Umbria: DGR 18/6/03, n. 852. Veneto: DCR 3/12/03, n. 67. Valle d'Aosta: DGR 30/12/03, n. 5130.



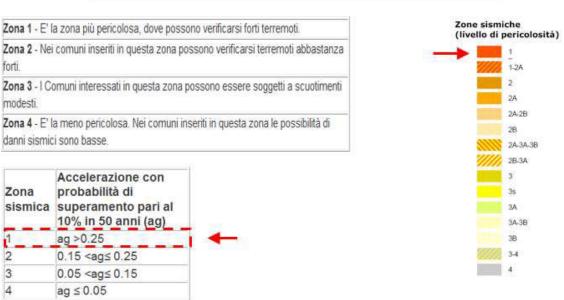



Fig. 15 – Stralcio della "Carta delle zone sismiche d'Italia" (Classificazione Sismica 2010), del Dipartimento della Protezione Civile (Ufficio prevenzione, valutazione e mitigazione del rischio sismico), con localizzazione del Comune di Bisignano (CS) e con indicazione della Zona sismica di riferimento.

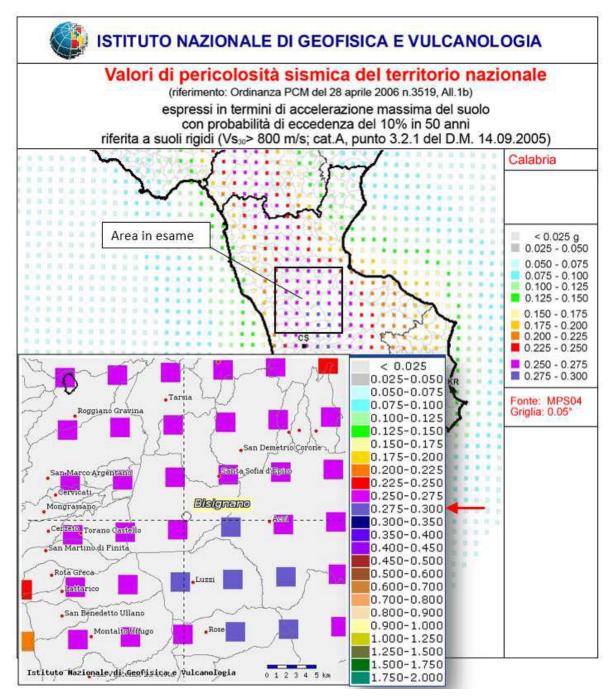



Fig. 16 – Mappa di pericolosità sismica della Regione Calabria, con particolare riferito al comune di Comune di Paterno Calabro (CS) (Fonte INGV). I valori di pericolosità sismica sono espressi in termini di accelerazione massima del suolo con probabili-tà di eccedenza del 10% in 50 anni, riferita a suoli rigidi (Vs30 > 800 m/s; cat. A).

### CONCLUSIONI

L'analisi degli elementi geomorfologici, geolitologici, geotecnici, idrogeologici, strutturali, nonché i risultati delle indagini geognostiche discussi in precedenza, ha consentito di acquisire un quadro sufficientemente chiaro sul grado di equilibrio geostatico posseduto dall'area di studio per cui è possibile affermare che l'intervento di previsione progettuale è realizzabile tenendo conto delle indicazioni contenute nella presente relazione.

Facendo riferimento a quanto contenuto nel Piano di Stralcio di Bacino per l'Assetto Idrogeologico (D. L. 180/98) ed in particolare alla "Carta inventario delle frane relative alle infrastrutture." ed alla "perimetrazione aree a rischio idraulico", (figg. 5 e 6), l'area di interesse progettuale non ricade in zone con condizioni di rischio connessi a processi geologici ed idrogeologici.

Facendo riferimento a quanto contenuto nel Programma di Previsione e Prevenzione dei Rischi (P.P.P.R. redatto dalla Provincia di Cosenza) (fig. 10), risulta che nei pressi dell'area di interesse progettuale (a nord-est dell'area di interesse) è rilevabile un movimento gravitativo di tipo zona franosa superficiale attiva. L'area di intervento ricade nettamente al di fuori dell'areale segnalato ed in particolare risulta distare, dalla base della stessa al più vicino spigolo dell'area proposta, oltre i 20m (stessa larghezza posta dal PAI Calabria per individuare la fascia d'influenza esterna rispetto all'area in frana). Inoltre la porzione di versante sopra descritta è stata sottoposta a Verifica di stabilità (AII. 5) su 2 sezioni (a-a' & b-b'). L'analisi di stabilità condotta ha evidenziato l'assenza di potenziali superfici di scorrimento caratterizzate da un fattore di sicurezza minore o uguale ad 1 (instabili) ed in particolare per la sezione a-a' localizza una superficie di scorrimento con fattore di sicurezza minimo Fs=1.3; per la sezione b-b' la superficie di scorrimento individuata ha un fattore di sicurezza minimo Fs=2.6 (AII. 5).

Per cui allo stato attuale si può affermare che l'area di intervento attraversa una fase di relativo riposo morfogenetico e possiede un grado di equilibrio geostatico adeguato alle esigenze; difatti non si ravvisano fenomeni morfologici che possano venire accelerati o comunque profondamente modificati dalla realizzazione dell'intervento in progetto. Si precisa che le opere previste in progetto, localizzate in

corrispondenza di un pianoro e distanti dalla base del versante, non pregiudicano le condizioni di stabilità del versante stesso.

Inoltre anche valutando uno scenario di evoluzione (caso estremo di instabilità) dei volumi mobilizzabili in caso di propagazione di un corpo di frana, calcolati sulla superficie critica della sezione a-a' (con FS=1.3), sono tali da <u>non intaccare l'area oggetto di proposta di intervento (fig. 17)</u>.

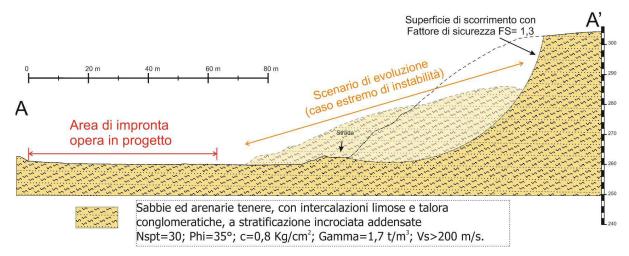


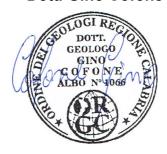

Fig. 17 – Scenario di evoluzione (caso estremo di instabilità) dei volumi mobilizzati e possibile propagazione del corpo di frana, valutato sulla superficie critica della sezione a-a' (con FS=1.3).

Dal punto di vista geotecnico, i terreni di fondazione sono rappresentati depositi sciolti C ed il loro spessore è di circa 2,5 metri ed angolo di attrito interno di 25° (fig. 13). Il sottostante litotipo (Sabbie ed arenarie tenere, con intercalazioni limose e talora conglomeratiche) mostra caratteristiche geotecniche ancora migliori (fig. 13).

Tali caratteristiche meccaniche, di entrambi i litotipi, risultano essere sufficienti per la realizzazione dell'intervento proposto; tuttavia il dimensionamento dell'opera dovrà tenere conto del carico della struttura e delle caratteristiche del terreno. Inoltre essendo gli stessi caratterizzati da frequenti variazioni eteropiche latero-verticali, in fase di scavo si dovrà porre particolare attenzione ad eventuali macroscopiche disomogeneità ed adottare gli accorgimenti necessari ad evitare eventuali complicazioni dovute alla presenza di materiali a differente comportamento meccanico lungo il piano di posa delle opere di fondazione. Si consiglia qualora si dovessero riscontrare,

durante la fase di scavo, sacche di materiale allentato in alcuni ambiti dei siti di fondazione che queste vengano rimosse e sostituite con materiale arido, ciò eviterà l'eventuale innesco di cedimenti differenziali che potrebbero essere dannosi alla stabilità delle strutture.

Dalla prova Penetrometrica Dinamica Superpesante (All. 1) non è stata rilevata la presenza di falda superficiale (almeno nei primi 3,3 metri dal p.c.). In particolare la misura effettuata con freatimetro in tubo piezometrico (installato in foro della DPSH) non ha rilevato presenza di acqua fino a fondo foro.


Per quanto riguarda la regimazione delle acque di scorrimento superficiale, allo scopo di drenare in maniera adeguata l'area edificata e di mantenere la condizioni di stabilità del complesso struttura-terreno, è consigliata la raccolta ed il recapito delle acque di ruscellamento con opportune canalizzazioni che ne impediscano il ristagno.

In conclusione si può affermare che per l'intervento previsto in progetto, in conformità a quanto esposto nel presente studio e nel rispetto delle indicazioni fornite (con l'osservanza delle prescrizioni dettate dallo scrivente) si può esprimere un positivo parere di fattibilità geologica.

Bisignano, Marzo 2019

II Geologo

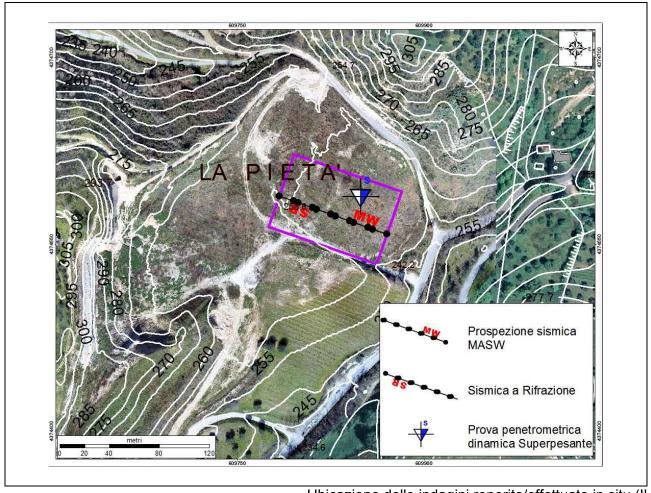
**Dott. Gino Cofone** 



### **ALLEGATI**

Allegato 1 Pag.30 Prova penetrometrica dinamica Superpesante DPSH

Allegato 2 Pag.41 Prospezione sismica di tipo MASW


Allegato 3 Pag.53 Stendimento sismica rifrazione SR

Allegato 4 Pag.64 Rilievo con Drone

Allegato 5 Pag.75 Analisi di stabilità

### Allegato 1

## Prove penetrometriche dinamiche Superpesanti **DPSH**



Ubicazione delle indagini reperite/effettuate in situ (Il rettangolo indica l'area di impronta dell'intervento in progetto)

### PROVA PENETROMETRICA DINAMICA

| Committente: Descrizione: Località: |  |
|-------------------------------------|--|
| Locanta.                            |  |

Caratteristiche Tecniche-Strumentali Sonda: DPSH 63 DEEP DRILL

| Rif. Norme                 | DIN 4094             |  |
|----------------------------|----------------------|--|
|                            |                      |  |
| Peso Massa battente        | 63,5 Kg              |  |
| Altezza di caduta libera   | 0,75 m               |  |
| Peso sistema di battuta    | 0,6 Kg               |  |
| Diametro punta conica      | 50,96 mm             |  |
| Area di base punta         | 20,4 cm <sup>2</sup> |  |
| Lunghezza delle aste       | 0,9 m                |  |
| Peso aste a metro          | 5,5 Kg/m             |  |
| Profondità giunzione prima | asta 0,80 m          |  |
| Avanzamento punta          | 0,30 m               |  |
| Numero colpi per punta     | N(30)                |  |
| Coeff. Correlazione        | 0,988                |  |
| Rivestimento/fanghi        | No                   |  |
| Angolo di apertura punta   | 60 °                 |  |

### INDAGINE PENETROMETRICA DINAMICA SUPERPESANTE DPSH:

### **STRUMENTAZIONE**

L'indagine penetrometrica DPSH è stata svolta con Penetrometro Dinamico Superpesante Modello: DPSH73SM prodotto dalla GeoDeepDrill s.r.l. di Bondeno (Ferrara), macchina conforme con le Norme Tecniche dei Penetrometri Dinamici Superpesanti Normalizzati, in particolare:

A.G.I. Associazione Geotecnica Italiana (1977) "Raccomandazioni sulla Programmazione ed Esecuzione delle Indagini Geotecniche" (DPSH).

ISSMFE Technical Committee on Penetration Testing (1988) (ora IMSSGE) "Dynamic Probing (DP): International Reference Test Procedure. Proc. ISOPT-I, Orlando (USA)";

UNI EN ISO 22476-2:2005 "Geotechnical investigation and testing - Field testing - Part 2: Dynamic probing.

Il penetrometro è alimento da un motore munito di centralina oleodinamica, il tutto montato su cingolo gommato.

TIPO DPSH

MASSA BATTENTE 63,5 kg

ALTEZZA DI CADUTA 750 mm

DIAMETRO PUNTA CONICA (DPSH) 50,5 mm

APERTURA PUNTA CONICA (DPSH) 60°

AREA DI BASE PUNTA CONICA (DPSH) 20 cm2

LUNGH. PARTE CILINDRICA PUNTA CONICA (DPSH) 51 mm

LUNGHEZZA ASTE 0,90 m

DIAMETRO ASTE 34/32 mm

PESO ASTE 5,50 kg

AVANZAMENTO PUNTA 300 mm

NUMERO COLPI PER PUNTA N30

COEFFICIENTE DI CORRELAZIONE CON NSPT 1,014

# PROVE PENETROMETRICHE DINAMICHE CONTINUE (DYNAMIC PROBING) DPSH - DPM (... scpt ecc.)

### Note illustrative - Diverse tipologie di penetrometri dinamici

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi δ) misurando il numero di colpi N necessari.

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva, economicità e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M;
- altezza libera caduta H;
- punta conica: diametro base cono D, area base A (angolo di apertura  $\alpha$ );
- avanzamento (penetrazione)  $\delta$ ;
- presenza o meno del rivestimento esterno (fanghi bentonitici).

Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (vedi tabella sotto riportata) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente):

- tipo LEGGERO (DPL);
- tipo MEDIO (DPM);
- tipo PESANTE (DPH);
- tipo SUPERPESANTE (DPSH).

Classificazione ISSMFE dei penetrometri dinamici:

| Tipo                           | Sigla di riferimento | peso della massa M<br>(kg) | prof. max indagine<br>battente<br>(m) |
|--------------------------------|----------------------|----------------------------|---------------------------------------|
| Leggero                        | DPL (Light)          | M ≤ 10                     | 8                                     |
| Medio                          | DPM (Medium)         | 10 < M < 40                | 20-25                                 |
| Pesante                        | DPH (Heavy)          | $40 \le M < 60$            | 25                                    |
| Super pesante<br>(Super Heavy) | DPSH                 | M ≥ 60                     | 25                                    |

### penetrometri in uso in Italia

In Italia risultano attualmente in uso i seguenti tipi di penetrometri dinamici (non rientranti però nello Standard ISSMFE):

- DINAMICO LEGGERO ITALIANO (DL-30) (MEDIO secondo la classifica ISSMFE) massa battente M = 30 kg, altezza di caduta H = 0.20 m, avanzamento  $\delta$  = 10 cm, punta conica ( $\alpha$ =60-90°), diametro D 35.7 mm, area base cono A=10 cm $^2$  rivestimento / fango bentonitico : talora previsto;
- DINAMICO LEGGERO ITALIANO (DL-20) (MEDIO secondo la classifica ISSMFE) massa battente M = 20 kg, altezza di caduta H=0.20 m, avanzamento  $\delta$  = 10 cm, punta conica ( $\alpha$ = 60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;
- DINAMICO PESANTE ITALIANO (SUPERPESANTE secondo la classifica ISSMFE) massa battente M = 73 kg, altezza di caduta H=0.75 m, avanzamento  $\delta$ =30 cm, punta conica ( $\alpha$  = 60°), diametro D = 50.8 mm, area base cono A=20.27 cm² rivestimento: previsto secondo precise indicazioni;
- DINAMICO SUPERPESANTE (Tipo EMILIA) massa battente M=63.5 kg, altezza caduta H=0.75 m, avanzamento  $\delta$ =20-30 cm, punta conica conica ( $\alpha$  = 60°-90°) diametro D = 50.5 mm, area base cono A = 20 cm², rivestimento / fango bentonitico : talora previsto.

### **Correlazione con Nspt**

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del

numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

$$NSPT = \beta_t \cdot N$$

Dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui

M peso massa battente.

M' peso aste.

H altezza di caduta.

A area base punta conica.

 $\delta$  passo di avanzamento.

### Valutazione resistenza dinamica alla punta Rpd

Formula Olandesi

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

Rpd resistenza dinamica punta (area A).

e infissione media per colpo ( $\delta/N$ ).

M peso massa battente (altezza caduta H).

P peso totale aste e sistema battuta.

### Calcolo di (N<sub>1</sub>)60

(N<sub>1</sub>)<sub>60</sub> è il numero di colpi normalizzato definito come segue:

$$(N_1)_{60} = \text{CN} \cdot \text{N60 con CN} = \sqrt{(\text{Pa}/\sigma_{\text{vo}})} \quad \text{CN} < 1.7 \quad \text{Pa} = 101.32 \,\text{kPa}$$
 (Liao e Whitman 1986)

$$N_{60} = N_{SPT} \cdot (ER/60) \cdot C_S \cdot C_r \cdot C_d$$

ER/60 rendimento del sistema di infissione normalizzato al 60%.

C<sub>S</sub> parametro funzione della controcamicia (1.2 se assente).

C<sub>d</sub> funzione del diametro del foro (1 se compreso tra 65-115mm).

C<sub>r</sub> parametro di correzione funzione della lunghezza delle aste.

### Metodologia di Elaborazione.

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della *GeoStru Software*.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini (1983) - Meyerhof (1956) - Desai (1968) - Borowczyk-Frankowsky (1981).

Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche prove di laboratorio eseguite come rappresentazione generale di una verticale eterogenea disuniforme e/o complessa.

In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e delle resistenza alla punta.

### Valutazioni statistiche e correlazioni

### **Elaborazione Statistica**

Permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono :

#### Media

Media aritmetica dei valori del numero di colpi sullo strato considerato.

### Media minima

Valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato.

#### Massimo

Valore massimo dei valori del numero di colpi sullo strato considerato.

#### Minimo

Valore minimo dei valori del numero di colpi sullo strato considerato.

### Scarto quadratico medio

Valore statistico di scarto dei valori del numero di colpi sullo strato considerato.

#### Media deviata

Valore statistico di media deviata dei valori del numero di colpi sullo strato considerato.

### Media (+ s)

Media + scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

#### *Media* (– s)

Media - scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

#### Distribuzione normale R.C.

Il valore di N<sub>spt,k</sub> viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, secondo la seguente relazione:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot (\sigma_{Nspt})$$

dove  $\sigma_{Nspt}$  è la deviazione standard di Nspt

#### Distribuzione normale R.N.C.

Il valore di Nspt,k viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, trattando i valori medi di Nspt distribuiti normalmente:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot (\sigma_{Nspt}) / \sqrt{n}$$

dove n è il numero di letture.

### Correlazioni geotecniche terreni incoerenti

Correzione Nspt in presenza di falda

 $Nspt \ corretto = 15 + 0.5 \cdot (Nspt - 15)$ 

### Nspt è il valore medio nello strato

La correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda).

### Angolo di Attrito

- Peck-Hanson-Thornburn-Meyerhof (1956) Correlazione valida per terreni non molli a prof. < 5 m;</li>
   correlazione valida per sabbie e ghiaie rappresenta valori medi. Correlazione storica molto usata,
   valevole per prof. < 5 m per terreni sopra falda e < 8 m per terreni in falda (tensioni < 8-10 t/mq)</li>
- Meyerhof (1956) Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati).
- Sowers (1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. < 4 m. sopra falda e < 7 m per terreni in falda) σ >5 t/mq.
- Shioi-Fukuni (1982) ROAD BRIDGE SPECIFICATION, Angolo di attrito in gradi valido per sabbie
   sabbie fini o limose e limi siltosi (cond. ottimali per prof. di prova > 8 m sopra falda e > 15 m per terreni in falda) σ >15 t/mq.
- Shioi-Fukuni (1982) JAPANESE NATIONALE RAILWAY, Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose.
- Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie sabbie medie e grossolane-ghiaiose
   (cond. ottimali per prof. > 8 m sopra falda e > 15 m per terreni in falda) s>15 t/mq.

• Mitchell e Katti (1965) - Correlazione valida per sabbie e ghiaie.

#### Densità relativa (%)

- Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato.
- Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.
- Meyerhof (1957).
- Schultze & Menzenbach (1961) per sabbie fini e ghiaiose NC, metodo valido per qualunque valore di pressione efficace in depositi NC, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

### Modulo Di Young $(E_{\nu})$

- Terzaghi elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace.
- Schmertmann (1978), correlazione valida per vari tipi litologici.
- Schultze-Menzenbach, correlazione valida per vari tipi litologici.
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia.
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso, sabbia media, sabbia e ghiaia.

#### Modulo Edometrico

Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia

- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa.
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati).
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

#### Stato di consistenza

• Classificazione A.G.I. 1977

### Peso di Volume

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

### Peso di volume saturo

• Terzaghi-Peck (1948-1967)

### Modulo di deformazione di taglio (G)

- Ohsaki & Iwasaki elaborazione valida per sabbie con fine plastico e sabbie pulite.
- Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 4,0 kg/cmq.

### PROVA ... Nr.1 DPSH 1

Strumento utilizzato... Prova eseguita in data Profondità prova Falda non rilevata DPSH 63 DEEP DRILL 10/03/2019 3,30 mt

Tipo elaborazione Nr. Colpi: Medio Minimo

| Profondità (m) | Nr. Colpi | Calcolo coeff.<br>riduzione sonda Chi | Res. dinamica<br>ridotta<br>(Kg/cm²) | Res. dinamica<br>(Kg/cm²) | Pres. ammissibile<br>con riduzione<br>Herminier -<br>Olandesi<br>(Kg/cm²) | Pres. ammissibile<br>Herminier -<br>Olandesi<br>(Kg/cm²) |
|----------------|-----------|---------------------------------------|--------------------------------------|---------------------------|---------------------------------------------------------------------------|----------------------------------------------------------|
| 0,30           | 1         | 0,853                                 | 6,05                                 | 7,10                      | 0,30                                                                      | 0,35                                                     |
| 0,60           | 5         | 0,847                                 | 30,07                                | 35,50                     | 1,50                                                                      | 1,77                                                     |
| 0,90           | 12        | 0,842                                 | 66,45                                | 78,96                     | 3,32                                                                      | 3,95                                                     |
| 1,20           | 10        | 0,836                                 | 55,03                                | 65,80                     | 2,75                                                                      | 3,29                                                     |
| 1,50           | 4         | 0,831                                 | 21,88                                | 26,32                     | 1,09                                                                      | 1,32                                                     |
| 1,80           | 21        | 0,726                                 | 93,51                                | 128,75                    | 4,68                                                                      | 6,44                                                     |
| 2,10           | 39        | 0,622                                 | 148,64                               | 239,10                    | 7,43                                                                      | 11,96                                                    |
| 2,40           | 46        | 0,617                                 | 174,05                               | 282,02                    | 8,70                                                                      | 14,10                                                    |
| 2,70           | 46        | 0,613                                 | 161,79                               | 264,00                    | 8,09                                                                      | 13,20                                                    |
| 3,00           | 42        | 0,609                                 | 146,72                               | 241,05                    | 7,34                                                                      | 12,05                                                    |
| 3,30           | 50        | 0,605                                 | 173,52                               | 286,96                    | 8,68                                                                      | 14,35                                                    |

| Prof. S | trato | NPDM  | Rd                    | Tipo       | Clay     | Peso unità | Peso unità | Tensione              | Coeff. di | NSPT  | Descrizione |
|---------|-------|-------|-----------------------|------------|----------|------------|------------|-----------------------|-----------|-------|-------------|
| (m)     |       |       | (Kg/cm <sup>2</sup> ) |            | Fraction | di volume  | di volume  | efficace              | correlaz. |       |             |
|         |       |       |                       |            | (%)      | $(t/m^3)$  | saturo     | (Kg/cm <sup>2</sup> ) | con Nspt  |       |             |
|         |       |       |                       |            |          |            | $(t/m^3)$  |                       |           |       |             |
|         | 1,5   | 3,7   | 24,92                 | Incoerente | 0        | 1,48       | 1,88       | 0,11                  | 0,99      | 3,66  | Coperture   |
|         |       |       |                       |            |          |            |            |                       |           |       | detritiche  |
|         | 3,3   | 30,83 | 184,53                | Incoerente | 0        | 2,14       | 2,04       | 0,41                  | 0,99      | 30,46 | Sabbie      |
|         |       |       |                       |            |          |            |            |                       |           |       | limose      |
|         |       |       |                       |            |          |            |            |                       |           |       | ghiaiose    |

### TERRENI INCOERENTI

### Densità relativa

| Delisita relativa               |                                       |              |               |               |                   |               |
|---------------------------------|---------------------------------------|--------------|---------------|---------------|-------------------|---------------|
|                                 | NSPT                                  | Prof. Strato | Gibbs & Holtz | Meyerhof 1957 | Schultze &        | Skempton 1986 |
|                                 |                                       | (m)          | 1957          |               | Menzenbach (1961) |               |
| [1] - Coperture detritiche      | · · · · · · · · · · · · · · · · · · · | 1,50         | 19            | 44,61         | 56,61             | 17,17         |
| [2] - Sabbie limose<br>ghiaiose |                                       | 3,30         | 58,74         | 100           | 100               | 63,97         |

Angolo di resistenza al taglio

| Aligoio ui | CSISTEIL | a ai tagii | U        |            |          |        |          |                   |          |           |
|------------|----------|------------|----------|------------|----------|--------|----------|-------------------|----------|-----------|
|            | NSPT     | Prof.      | Nspt     | Peck-      | Meyerhof | Sowers | Mitchell | Shioi-Fukuni 1982 | Japanese | Owasaki & |
|            |          | Strato     | corretto | Hanson-    | (1956)   | (1961) | & Katti  | (ROAD BRIDGE      | National | Iwasaki   |
|            |          | (m)        | per      | Thornburn- |          |        | (1981)   | SPECIFICATION)    | Railway  |           |
|            |          |            | presenza | Meyerhof   |          |        |          |                   |          |           |
|            |          |            | falda    | 1956       |          |        |          |                   |          |           |
| [1] -      | 3,66     | 1,50       | 3,66     | 28,05      | 21,05    | 29,02  | <30      | 22,41             | 28,1     | 23,56     |
| Coperture  |          |            |          |            |          |        |          |                   |          |           |
| detritiche |          |            |          |            |          |        |          |                   |          |           |
| [2] -      | 30,46    | 3,30       | 30,46    | 35,7       | 28,7     | 36,53  | 32-35    | 36,38             | 36,14    | 39,68     |
| Sabbie     |          |            |          |            |          |        |          |                   |          |           |
| limose     |          |            |          |            |          |        |          |                   |          |           |
| ghiaiose   |          |            |          |            |          |        |          |                   |          |           |

Modulo di Young (Kg/cm²)

| Modulo al Your  | 1g (Kg/cm²) |              |               |          |             |            |               |               |
|-----------------|-------------|--------------|---------------|----------|-------------|------------|---------------|---------------|
|                 | NSPT        | Prof. Strato | Nspt corretto | Terzaghi | Schmertmann | Schultze-  |               | Bowles (1982) |
|                 |             | (m)          | per presenza  |          | (1978)      | Menzenbach | ed altri 1970 | Sabbia Media  |
|                 |             |              | falda         |          | (Sabbie)    | (Sabbia    | (Sabbia)      |               |
|                 |             |              |               |          |             | ghiaiosa)  |               |               |
| [1] - Coperture | 3,66        | 1,50         | 3,66          |          | 29,28       |            |               |               |
| detritiche      |             |              |               |          |             |            |               |               |
| [2] - Sabbie    | 30,46       | 3,30         | 30,46         | 393,94   | 243,68      | 360,13     | 408,45        | 227,30        |
| limose          |             |              |               |          |             |            |               |               |
| ghiaiose        |             |              |               |          |             |            |               |               |

Modulo Edometrico (Kg/cm²)

| Modulo Edometri |       |              |                   |           |               |              |                |
|-----------------|-------|--------------|-------------------|-----------|---------------|--------------|----------------|
|                 | NSPT  | Prof. Strato | Nspt corretto per | Buisman-  | Begemann 1974 | Farrent 1963 | Menzenbach e   |
|                 |       | (m)          | presenza falda    | Sanglerat | (Ghiaia con   |              | Malcev (Sabbia |
|                 |       |              |                   | (sabbie)  | sabbia)       |              | media)         |
| [1] - Coperture | 3,66  | 1,50         | 3,66              |           | 34,98         | 25,99        | 54,32          |
| detritiche      |       |              |                   |           |               |              |                |
| [2] - Sabbie    | 30,46 | 3,30         | 30,46             | 182,76    | 90,03         | 216,27       | 173,85         |
| limose ghiaiose |       |              |                   |           |               |              |                |

Classificazione AGI

| Classificazione AGI |       |              |                   |                       |                     |
|---------------------|-------|--------------|-------------------|-----------------------|---------------------|
|                     | NSPT  | Prof. Strato | Nspt corretto per | Correlazione          | Classificazione AGI |
|                     |       | (m)          | presenza falda    |                       |                     |
| [1] - Coperture     | 3,66  | 1,50         | 3,66              | Classificazione A.G.I | SCIOLTO             |
| detritiche          |       |              |                   |                       |                     |
| [2] - Sabbie limose | 30,46 | 3,30         | 30,46             | Classificazione A.G.I | ADDENSATO           |
| ghiaiose            |       |              |                   |                       |                     |

Peso unità di volume

| i eso unita di volune      |      |              |                   |                    |                      |
|----------------------------|------|--------------|-------------------|--------------------|----------------------|
|                            | NSPT | Prof. Strato | Nspt corretto per | Correlazione       | Peso Unità di Volume |
|                            |      | (m)          | presenza falda    |                    | $(t/m^3)$            |
| [1] - Coperture detritiche |      | 1,50         | 3,66              | Terzaghi-Peck 1948 | 1,39                 |
| [2] - Sabbie limose        | ,    | 3,30         | 30,46             | Terzaghi-Peck 1948 | 1,70                 |
| ghiaiose                   |      |              |                   |                    |                      |

Peso unità di volume saturo

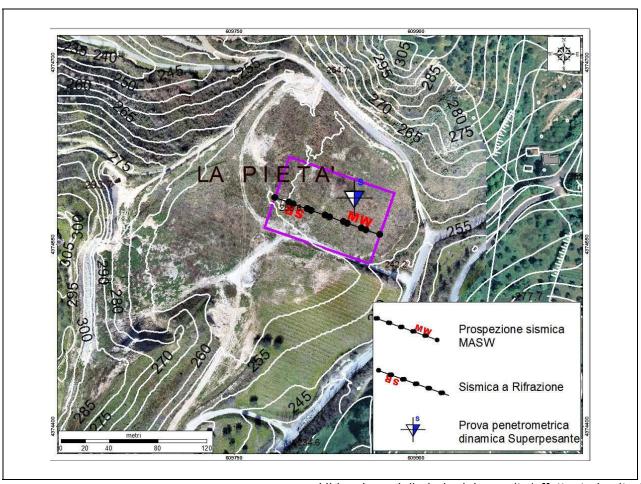
|                                 | NSPT | Prof. Strato<br>(m) | Nspt corretto per presenza falda | Correlazione       | Peso Unità Volume<br>Saturo<br>(t/m³) |
|---------------------------------|------|---------------------|----------------------------------|--------------------|---------------------------------------|
| [1] - Coperture<br>detritiche   |      | 1,50                | 3,66                             | Terzaghi-Peck 1948 | 1,87                                  |
| [2] - Sabbie limose<br>ghiaiose | ,    | 3,30                | 30,46                            | Terzaghi-Peck 1948 | 2,06                                  |

Modulo di deformazione a taglio dinamico (Kg/cm²)

|                                 | NSPT | Prof. Strato<br>(m) | Nspt corretto per presenza falda | Ohsaki (Sabbie pulite) | Robertson e<br>Campanella (1983) e<br>Imai & Tonouchi<br>(1982) |
|---------------------------------|------|---------------------|----------------------------------|------------------------|-----------------------------------------------------------------|
| [1] - Coperture<br>detritiche   |      | 1,50                | 3,66                             | 220,08                 | 276,18                                                          |
| [2] - Sabbie limose<br>ghiaiose |      | 3,30                | 30,46                            | 1612,94                | 1008,02                                                         |

••••

### PROVA PENETROMETRICA DINAMICA Nr.1 Strumento utilizzato... DPSH 63 DEEP DRILL


Committente: Data: 10/03/2019
Descrizione:
Località:

Scala 1:15 Numero di colpi penetrazione punta Rpd (Kg/cm²) Interpretazione Stratigrafica 0 5 10 15 20 25 30 35 40 45 5,6 11,2 16,8 22,4 Coperture detritiche 150 cm 1 Sabbie limose ghiaiose 2 -180 cm

SIGNATURE 1 SIGNATURE 2

## Allegato 2

### Prospezione sismica di tipo Masw MW



Ubicazione delle indagini reperite/effettuate in situ (Il rettangolo indica l'area di impronta dell'intervento in progetto)

### **MASW:**

Per la generazione delle onde superficiali è stato impiegato un sistema di energizzazione costituito da una mazza di 12 kg, battente su una piastra circolare in acciaio.

L'acquisizione è stata interpretata a 36 canali di registrazione, con geofoni ogni 2.00 m, derivante da tracce sismiche a più energizzazioni con distanza dallo stendimento a partire da 4 a 6 m. Le tracce sismiche derivanti delle energizzazioni sopraccitate sono state prima confrontate, e poi interlacciate, per poi considerare sempre i segnali più affidabili.

Il software MASW <u>considera anche il contributo dei modi superiori</u>. Le tracce sono state rappresentate sul diagramma "frequenze - velocità di fase", individuando come zone di massima ampiezza gli allineamenti attribuibili alle onde di Rayleigh, da cui scaturisce la variazione di tali velocità al variare della loro frequenza o lunghezza d'onda. Successivamente, col d'inversione è stato dedotto il profilo verticale delle velocità.

La curva apparente viene calcolata combinando insieme tutti i modi superiori; ciò può essere indispensabile nel caso di siti inversamente dispersivi, ovvero nel caso di litologie con strati soffici o rigidi o anche con forti contrasti di rigidezza.

Il profilo del terreno è suddiviso in più strati, ciascuno dei quali contraddistinto da valori di Vs, e da valori orientativi delle velocità delle onde longitudinali "Vp", della Densità del terreno e del Coefficiente di Poisson

### STRUMENTAZIONE UTILIZZATA

Per l'acquisizione dei dati è stato utilizzato un sismografo della Sara electronic instruments s.r.l. di Perugia, con convertitore digitale a 16 bit reali, e geofoni verticali della Geospace da 4.5 Hz. La strumentazione è composta da un cavo sismico lungo il

quale sono disposti i digitalizzatori, con relative prolunghe dotate di connettori XLR a quattro poli, il tutto collegati ad una unità d'interfaccia "DoReMi master". I dati arrivano direttamente sul pc con frequenze da 200 a 20000 campioni al secondo.

Le principali caratteristiche tecniche della strumentazione utilizzata vengono riassunte come segue:

Tipo Convertitore A/D:
Input span del convertitore:

Bit:

Rapporto segnale rumore @ 500 SPS, gain 27dB

Rapporto segnale rumore @ 1000 SPS, gain 27dB

Rapporto segnale rumore @ 10000 SPS, gain 27dB

Rapporto segnale rumore @ 10000 SPS, gain 27dB

86dB

Tipo di ingresso: differenziale non bipolare

Impedenza d'ingresso:>100kohmReiezione di modo comune:>60dBFrequenza massima di campionamento:20000 HzFiltro passa basso:4 poli 200HzFiltro passa alto:1 polo 2HzMicroprocessore:8 bit RISCFrequenza di clock:11.0592Mhz

Massima sfasatura di campionamento fra i canali : <30ppm
Massimo errore di trigger fra i canali: 630 nanosecondi

Memoria per canale: 64k Numero massimo campioni: 30000

Frequenze di campionamento: 200,300,500,1000,1500,2000,3000,

4000,5000,6000,8000,10000,20000 Hz

Numero massimo di canali collegabili: 255

Velocità di comunicazione: 115200 baud N,8,1

# Risultati delle analisi MASW

Autore:

Sito: Bisignano (CS) Data: 10.03.2019

Redatto da MASW (c) Vitantonio Roma. All rights reserved.

# 1 - Dati sperimentali

| Nome del file delle tracce                                                     |        |
|--------------------------------------------------------------------------------|--------|
| Numero di ricevitori                                                           | 36     |
| Distanza tra i sensori:                                                        | 2m     |
| Numero di campioni temporali                                                   | 2000   |
| Passo temporale di acquisizione                                                | 1ms    |
| Numero di ricevitori usati per l'analisi                                       | 36     |
| L'intervallo considerato per l'analisi comincia a                              | 0ms    |
| L'intervallo considerato per l'analisi termina a                               | 1999ms |
| I ricevitori non sono invertiti (l'ultimo ricevitore è l'ultimo per l'analisi) |        |

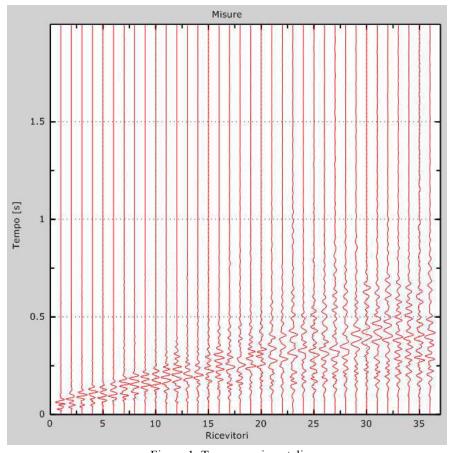



Figura 1: Tracce sperimentali

### 2 - Risultati delle analisi

| Frequenza finale   | 70Hz |
|--------------------|------|
| Frequenza iniziale | 2Hz  |

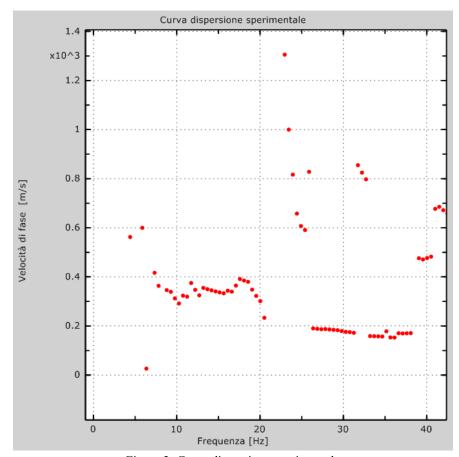



Figura 2: Curva dispersione sperimentale

# 3 - Curva di dispersione Tabella 1:Curva di dispersione

| Freq. [Hz] | V. fase [m/s] | V. fase min [m/s] | V. fase Max [m/s] |
|------------|---------------|-------------------|-------------------|
| 4.25139    | 564.421       | 529.458           | 599.385           |
| 6.09246    | 464.525       | 422.069           | 506.981           |
| 7.68247    | 389.603       | 369.624           | 409.582           |
| 8.83789    | 345.467       | 310.92            | 380.014           |
| 10.5278    | 287.21        | 254.743           | 319.676           |
| 20.6536    | 224.775       | 194.806           | 254.743           |
| 26.2605    | 192.308       | 172.329           | 212.288           |
| 29.4922    | 181.521       | 163.369           | 199.673           |
| 33.5411    | 157.345       | 129.873           | 184.816           |
| 36.3864    | 149.853       | 129.873           | 169.832           |

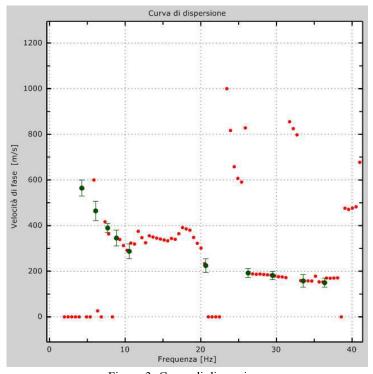



Figura 3: Curva di dispersione

### 4 - Profilo in sito

| Numero di strati (escluso semispazio) |          | 8    |
|---------------------------------------|----------|------|
| Spaziatura ricevitori [m]             |          | 2m   |
| Numero ricevitori                     |          | 40   |
| Numero modi                           |          | 10   |
|                                       | Strato 1 |      |
| h [m]                                 |          | 2,5  |
| z [m]                                 |          |      |
| Densità [kg/m <sup>3</sup> ]          |          | 1600 |
| Poisson                               |          | 0.39 |
| Vs [m/s]                              |          | 166  |
| Vp [m/s]                              |          | 391  |
| Vs min [m/s]                          |          | 83   |
| Vs max [m/s]                          |          | 249  |
| Vs fin.[m/s]                          |          | 166  |
|                                       | Strato 2 |      |
| h [m]                                 |          | 2,5  |
| z [m]                                 |          |      |
| Densità [kg/m^3]                      |          | 1600 |
| Poisson                               |          | 0.39 |
| Vs [m/s]                              |          | 203  |
| Vp [m/s]                              |          | 478  |
| Vs min [m/s]                          |          |      |
| Vs max [m/s]                          |          | 305  |
| Vs fin.[m/s]                          |          | 203  |
|                                       | Strato 3 |      |
| h [m]                                 |          | 6    |
| z [m]                                 |          | 11   |
| Densità [kg/m^3]                      |          |      |
| Poisson                               |          | 0.38 |
| Vs [m/s]                              |          |      |
| Vp [m/s]                              |          |      |
| Vs min [m/s]                          |          |      |
| Vs max [m/s]                          |          |      |
| Vs fin.[m/s]                          |          |      |
|                                       | Strato 4 |      |
| h [m]                                 |          | 2    |
| z [m]                                 |          |      |
| Densità [kg/m <sup>3</sup> ]          |          |      |

| Poisson          |          | 0.38 |
|------------------|----------|------|
| Vs [m/s]         |          | 319  |
| Vp [m/s]         |          | 725  |
| Vs min [m/s]     |          | 160  |
| Vs max [m/s]     |          | 638  |
| Vs fin.[m/s]     |          | 319  |
|                  | Strato 5 |      |
| h [m]            |          | 3    |
|                  |          |      |
|                  |          |      |
|                  |          |      |
|                  |          |      |
|                  |          |      |
| 1                |          |      |
|                  |          |      |
|                  |          |      |
| , , ,            | Strato 6 |      |
| h [m]            |          | 5    |
|                  |          |      |
|                  |          |      |
|                  |          |      |
|                  |          |      |
| 2 3              |          |      |
| 1                |          |      |
|                  |          |      |
|                  |          |      |
| V S TIII.[III/S] |          | 402  |
|                  | Strato 7 | _    |
|                  |          |      |
| z [m]            |          | 26   |
|                  |          |      |
|                  |          |      |
|                  |          |      |
|                  |          |      |
| 2 3              |          |      |
|                  |          |      |
| Vs fin.[m/s]     |          | 441  |
|                  | Strato 8 |      |
| h [m]            |          | 9    |
| z [m]            |          | 35   |
| Densità [kg/m^3] |          | 1800 |

| Poisson          | 0.37 |
|------------------|------|
| Vs [m/s]         | 500  |
| Vp [m/s]         | 1101 |
| Vs min [m/s]     | 258  |
| Vs max [m/s]     |      |
| Vs fin.[m/s]     | 500  |
| Strato 9         |      |
| h [m]            | 0    |
| z [m]            | -00  |
| Densità [kg/m^3] | 1800 |
| Poisson          | 0.36 |
| Vs [m/s]         | 660  |
| Vp [m/s]         | 1411 |
| Vs min [m/s]     | 314  |
| Vs max [m/s]     | 990  |
| Vs fin.[m/s]     |      |

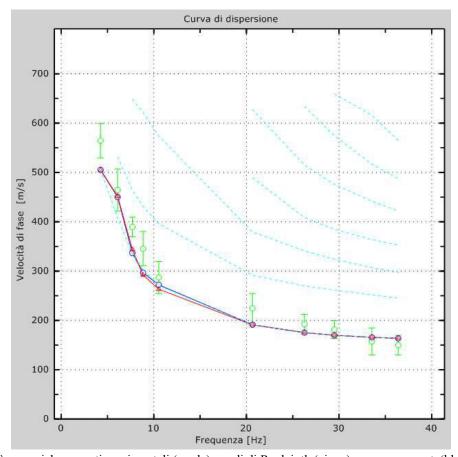



Figura 4: Velocità numeriche – punti sperimentali (verde), modi di Rayleigth (ciano), curva apparente(blu), curva numerica (rosso)

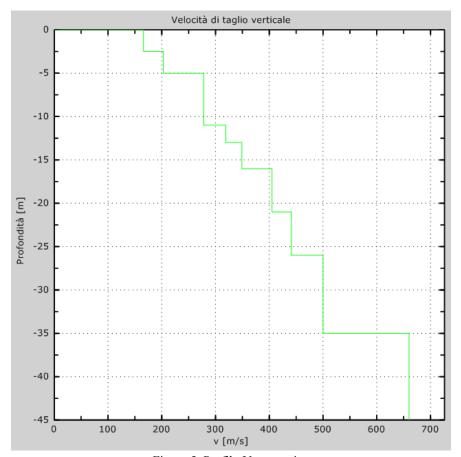



Figura 5: Profilo Vs numerico

### Sintesi profondità-VS

| Profondità dal p.c. (al centro della stesa sismica) | Velocità delle onde di taglio VS |
|-----------------------------------------------------|----------------------------------|
| - 2,50 m                                            | 166 m/sec                        |
| - 5,00 m                                            | 203 m/sec                        |
| - 11,0 m                                            | 278 m/sec                        |
| - 13,0 m                                            | 319 m/sec                        |
| - 16,0 m                                            | 349 m/sec                        |
| - 21,0 m                                            | 405 m/sec                        |
| - 26,0 m                                            | 441 m/sec                        |
| - 35,0 m                                            | 500 m/sec                        |
| - 00                                                | 660 m/sec                        |

### IPOTESI DI CALCOLO DEL Vs,eq DALLA SISMICA DI SUPERFICIE MASW PER LA DEFINIZIONE DELLA CATEGORIA DI SOTTOSUOLO (vedi tabella NTC 2018)

### **IPOTESI DI VS,EQ:**

### TIPO PROVA DIRETTA: PROVA MASW

Vs,eq = Vs,30 = 314 m/sec→ <u>lpotesi 1</u> con profondità dal piano campagna
Vs,eq = Vs,30 = 327 m/sec→ <u>lpotesi 2</u> con profondità a partire da 1 m dal p.c
Vs,eq = Vs,30 = 343 m/sec→ <u>lpotesi 3</u> con profondità a partire da 2 m dal p.c
Vs,eq = Vs,30 = 357 m/sec→ <u>lpotesi 4</u> con profondità a partire da 3 m dal p.c
Vs,eq = Vs,30 = 370 m/sec→ <u>lpotesi 5</u> con profondità a partire da 4 m dal p.c
Vs,eq = Vs,30 = 383 m/sec→ <u>lpotesi 5</u> con profondità a partire da 5 m dal p.c

Categorie di sottosuolo: C

# Allegato 3

### Stendimento sismica rifrazione SR



Ubicazione delle indagini reperite/effettuate in situ (Il rettangolo indica l'area di impronta dell'intervento in progetto)

### STENDIMENTO A RIFRAZIONE:

L'indagine è stata interpretata con uno stendimento ad 18 canali di registrazione, e geofoni infissi nel terreno ad una distanza prefissata di 4.0 m.

L'obiettivo è stato quello di indagare gli spessori in profondità, e quindi per una caratterizzazione dinamica del sottosuolo, con la definizione delle velocità apparenti delle onde longitudinali  $P(v_p)$ .

Per le analisi interpretative sono stati utilizzati metodi tradizionali (Intercette), e simmetricamente lungo lo stendimento sono stati realizzati punti di energizzazione ad offset laterali, con distanza dallo stendimento pari a quella intergeofonica, ed offset centrale, con registrazione dei tempi di arrivo delle onde Vp.

Al fine di migliorare i segnali acquisiti, sono state effettuate più battute nei punti di energizzazione, impostando automaticamente le amplificazioni dei guadagni (gain) in ingresso dei vari geofoni lungo lo stendimento.

La strumentazione adoperata è quella utilizzata anche per la prospezione sismica MASW.

L' elaborazione dei dati è stata eseguita col software di calcolo "Easy Refract".

### **Easy Refract**

Le indagini di sismica a rifrazione consentono di interpretare la stratigrafia del sottosuolo attraverso il principio fisico del fenomeno della rifrazione totale di un'onda sismica che incide su una discontinuità, individuata fra due corpi aventi proprietà meccaniche diverse (orizzonte rifrattorio). La condizione fondamentale per eseguire studi di sismica a rifrazione è quella per cui la successione di strati da investigare sia caratterizzata da velocità sismiche crescenti all'aumentare della profondità. In questo modo si possono valutare fino a 4 o 5 orizzonti rifrattori differenti.

Le prove si basano sulla misura dei tempi di percorso delle onde elastiche per le quali, ipotizzando le superfici di discontinuità estese rispetto alla lunghezza d'onda o, comunque, con deboli curvature, i fronti d'onda sono rappresentati mediante i relativi raggi sismici. L'analisi si avvale, poi, del principio di Fermat e della legge di Snell.

Il principio di Fermat stabilisce che il raggio sismico percorre la distanza tra sorgente e rilevatore seguendo il percorso per cui il tempo di tragitto è minimo. Per tale principio, dato un piano che separa due mezzi con caratteristiche elastiche diverse, il raggio sismico è quello che si estende lungo un piano perpendicolare alla discontinuità contente sia la sorgente che il ricevitore.

La legge di Snell è una formula che descrive le modalità di rifrazione di un raggio sismico nella transizione tra due mezzi caratterizzati da diversa velocità di propagazione delle onde o, equivalentemente, da diversi indici di rifrazione. L'angolo formato tra la superficie di discontinuità e il raggio sismico è chiamato angolo di incidenza  $\theta$ i mentre quello formato tra il raggio rifratto e la superficie normale è detto angolo di rifrazione  $\theta$ r. La formulazione matematica è:

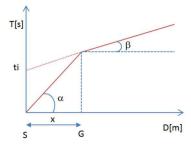
$$v_2 \sin \theta_i = v_1 \sin \theta_r$$

Dove v<sub>1</sub> e v<sub>2</sub> sono le velocità dei due mezzi separati dalla superficie di discontinuità.

Per  $v_1 > v_2$  si ha che  $\theta_i > \theta_r$  e la sismica a rifrazione non è attuabile poiché il raggio rifratto andrebbe ad inclinarsi verso il basso. Per  $v_1 < v_2$  si ha che  $\theta_i < \theta_r$  ed esiste un angolo limite di incidenza per cui  $\theta_r = 90^\circ$  ed il raggio rifratto viaggia parallelamente alla superficie di discontinuità. L'espressione che definisce l'angolo limite è:

$$\theta_i = \arcsin(v_1/v_2)$$

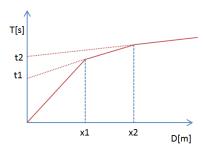
Il modo più semplice per analizzare i dati di rifrazione è quello di costruire un diagramma tempi-distanze in cui l'origine del sistema di riferimento è posto in corrispondenza della sorgente di generazione delle onde elastiche. In ascissa sono rappresentate le posizioni dei geofoni ed in ordinata i tempi dei primi arrivi. Ai geofoni più vicini alla sorgente giungono per primi gli impulsi che hanno seguito il percorso diretto in un tempo T dato dalla relazione


$$T = x_i / V_1$$

dove x<sub>i</sub> è la distanza tra il punto di energizzazione e il punto di rilevazione.

L'equazione precedente rappresenta una retta che passa per l'origine degli assi tempi-distanze e il suo coefficiente angolare consente di calcolare la velocità V1 del primo mezzo come

$$V_1 = 1/\tan \alpha$$

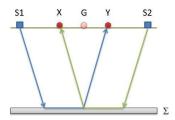

I tempi di arrivo dei raggi rifratti, nel diagramma tempi-distanze, si dispongono secondo una retta che avrà pendenza minore di quella delle onde dirette.



La curva tempi-distanze tende ad avere un andamento regolare secondo una spezzata i cui vertici sono i chiamati *punti di ginocchio* e rappresentano, fisicamente, la condizione in cui si verifica l'arrivo contemporaneo delle onde dirette e rifratte.

Per ciascuno di segmenti individuati si determina, dunque, il tempo di ritardo  $t_i$  che rappresenta la differenza tra il tempo che il raggio sismico impiega a percorrere un tratto alla velocità propria dello strato in cui si trasmette ed il tempo che impiegherebbe a viaggiare lungo la componente orizzontale di quel tratto alla massima velocità raggiunta in tutto il percorso di rifrazione.

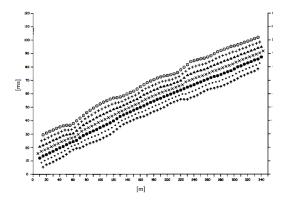
Graficamente il tempo di ritardo è dato dall'intersezione della retta che comprende un segmento della curva tempi-distanze con l'asse dei tempi.




Infine, dalla conoscenza dei tempi ti è possibile ricavare gli spessori dei rifrattori mediante la relazione:

$$h_{(i-1)} = \frac{V_{(i-1)}V_i}{2\sqrt{V_i^2 - V_{(i-1)}^2}} \left( t_i - \frac{2h_1\sqrt{V_i^2 - V_1^2}}{V_1V_i} - \dots - \frac{2h_{(i-2)}\sqrt{V_i^2 - V_{(i-2)}^2}}{V_1V_{(i-2)}} \right)$$

In situazioni morfologiche complesse può essere utilizzato come metodo di elaborazione il Metodo Reciproco Generalizzato (Generalized Reciprocal Method) discusso da Palmer nel 1980.


Il metodo è basato sulla ricerca di una distanza intergeofonica virtuale XY tale che i raggi sismici che partono da punti di energizzazione simmetrici rispetto allo stendimento, arrivino al geofono posto in posizione X e a quello posto in posizione Y provenendo da un medesimo punto del rifrattore.

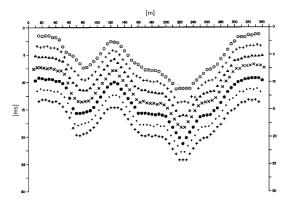


Il primo passo operativo è quello di costruire un diagramma tempi-distanze individuando nei sismogrammi ottenuti dai dati di campagna i primi arrivi delle onde sismiche. Per determinare la distanza XY ottimale è necessario considerare più punti di energizzazione tanto agli estremi quanto all'interno dello stendimento. Ciò permette di individuare con maggiore accuratezza i tempi relativi ad un medesimo rifrattore utili a caratterizzare le dromocrone, fondamentali all'interpretazione. Nelle interpretazioni multi strato, la generazione delle dromocrone può sfruttare tecniche di phantoming per sopperire alla mancanza dei dati per alcuni rifrattori.

Dalla costruzione delle dromocrone è possibile determinare la funzione velocità secondo l'equazione

$$T_{v} = \frac{T_{S_{1}Y} - T_{S_{2}X} + T_{S_{1}S_{s}}}{2}$$




dove  $T_{S1Y}$  e  $T_{S2X}$  sono i tempi di percorrenza dei raggi sismici per giungere, rispettivamente, dalla sorgente S1 ad X e dalla sorgente S2 ad Y mentre  $T_{S1S2}$  è il tempo di tragitto tra i due punti di scoppio S1 ed S2, esternamente simmetrici rispetto allo stendimento.  $T_{v}$  è il tempo calcolato su un geofono G posto tra X ed Y, non necessariamente coincidente con la posizione di un geofono dello stendimento.

Il calcolo della funzione  $T_V$  viene eseguito per ogni valore di XY compreso tra zero e metà dello stendimento con variazione pari alla distanza reale tra i geofoni dello stendimento. La migliore retta di regressione delle funzioni velocità ottenute, permette di determinare l'XY ottimo e la velocità del rifrattore che è ricavata dal coefficiente angolare.

Per mezzo della **funzione tempo-profondità** è possibile trovare la profondità del rifrattore espressa in unità di tempo. L'espressione di tale funzione è:

$$T_G = \frac{T_{S_1Y} + T_{S_2X} - \left(T_{S_1S_2} + \frac{XY}{V_n}\right)}{2}$$

Dove  $V_n$  è la velocità del rifrattore.



Analogamente a quanto avviene per la funzione velocità si determinano diverse funzioni tempo-profondità per l'insieme dei valori XY di studio. Tra le funzioni trovate, quella che presenta la maggiore articolazione compete al valore di XY ottimo.

Infine, è possibile determinare lo spessore del rifrattore in corrispondenza delle posizioni dei geofoni G mediante la relazione:

$$h = T_G \sqrt{\frac{V_n XY}{2T_G}}$$

h rappresenta la profondità minima dal geofono G dunque la morfologia del rifrattore è definita dall'inviluppo delle semicirconferenze di raggio h.

Uno dei principali vantaggi del G.R.M. è che il fattore di conversione della profondità è relativamente insensibile alle inclinazioni fino a circa 20°

### Dati generali

Data 11/03/2019 Via via Italia, Roma

### Geometria geofoni

|    | Posizione X | Posizione Z |
|----|-------------|-------------|
|    | [m]         | [m]         |
| 1  | 4.0         | 0.0         |
| 2  | 8.0         | 0.0         |
| 3  | 12.0        | 0.0         |
| 4  | 16.0        | 0.0         |
| 5  | 20.0        | 0.0         |
| 6  | 24.0        | 0.0         |
| 7  | 28.0        | 0.0         |
| 8  | 32.0        | 0.0         |
| 9  | 36.0        | 0.0         |
| 10 | 40.0        | 0.0         |
| 11 | 44.0        | 0.0         |
| 12 | 48.0        | 0.0         |
| 13 | 52.0        | 0.0         |
| 14 | 56.0        | 0.0         |
| 15 | 60.0        | 0.0         |
| 16 | 64.0        | 0.0         |
| 17 | 68.0        | 0.0         |
| 18 | 72.0        | 0.0         |

### Dati battute

### Battuta 1

 $\begin{array}{lll} \text{Posizione sorgente X} & & \text{-4} & [m] \\ \text{Posizione sorgente Z} & & 0 & [m] \end{array}$ 

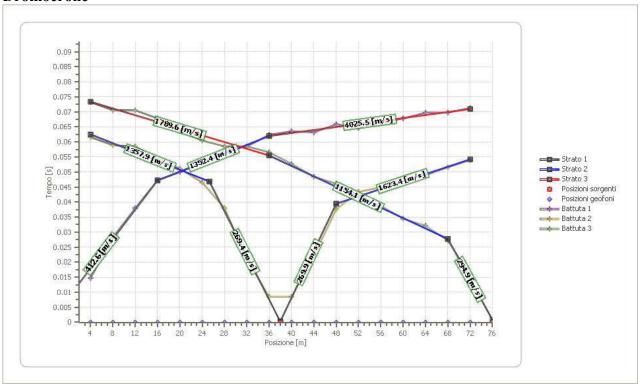
| Posizione geofono | Tempo   |
|-------------------|---------|
| [m]               | [ms]    |
| 4.0               | 14.7287 |
| 8.0               | 28.2946 |
| 12.0              | 37.9845 |
| 16.0              | 47.2868 |
| 20.0              | 50.0000 |
| 24.0              | 53.1008 |
| 28.0              | 56.9767 |
| 32.0              | 58.5271 |

| 36.0 |         |
|------|---------|
| 40.0 | 63.5659 |
| 44.0 | 63.1783 |
| 48.0 | 65.8915 |
| 52.0 | 64.7287 |
| 56.0 | 66.2791 |
| 60.0 | 67.8295 |
| 64.0 | 69.7674 |
| 68.0 | 69.7674 |
| 72.0 | 71.3178 |

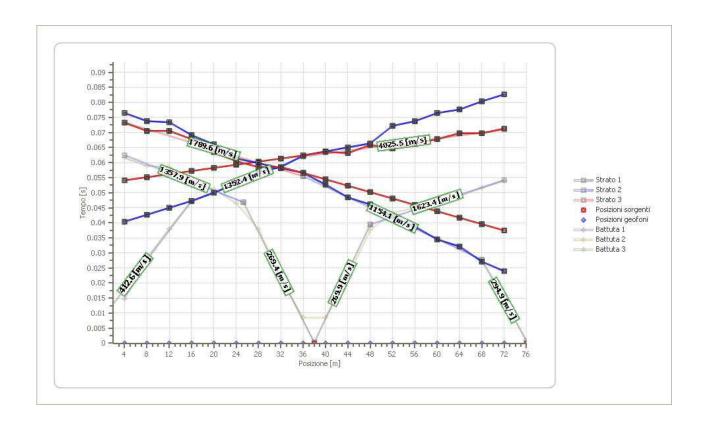
### Battuta 2

Posizione sorgente X
Posizione sorgente Z

38 [m]
0 [m]


| Posizione geofono | Tempo   |
|-------------------|---------|
| [m]               | [ms]    |
| 4.0               | 61.6279 |
| 8.0               | 58.9147 |
| 12.0              | 58.5271 |
| 16.0              | 54.2636 |
| 20.0              | 51.1628 |
| 24.0              | 46.5116 |
| 28.0              | 37.9845 |
| 32.0              | 20.9302 |
| 36.0              | 8.5271  |
| 40.0              | 8.5271  |
| 44.0              | 22.0930 |
| 48.0              | 37.5969 |
| 52.0              | 43.4109 |
| 56.0              | 44.9612 |
| 60.0              | 47.6744 |
| 64.0              | 48.8372 |
| 68.0              | 51.5504 |
| 72.0              | 53.8760 |

### Battuta 3


Posizione sorgente X 76 [m]
Posizione sorgente Z 0 [m]

| Posizione geofono | Tempo   |
|-------------------|---------|
| [m]               | [ms]    |
| 4.0               | 73.2558 |
| 8.0               | 70.5426 |
| 12.0              | 70.5426 |
| 16.0              | 67.8295 |
| 20.0              | 63.5659 |
| 24.0              | 60.4651 |
| 28.0              | 58.5271 |
| 32.0              | 58.5271 |
| 36.0              | 56.5891 |
| 40.0              | 52.7132 |
| 44.0              | 48.4496 |
| 48.0              | 46.1240 |
| 52.0              | 42.2481 |
| 56.0              | 38.7597 |
| 60.0              | 34.4961 |
| 64.0              | 32.1705 |
| 68.0              | 27.1318 |
| 72.0              | 15.8915 |

### **Dromocrone**



### **Dromocrone traslate**



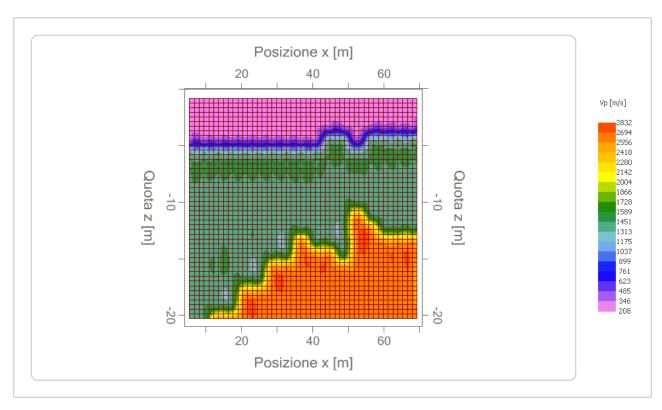
### Interpretazione col metodo G,.R.M.

XY: 0

|                  | Strato n. 1 | Strato n. 2 | Strato n. 3 |
|------------------|-------------|-------------|-------------|
| G= 4.0 [m]       | 5.1         | 22.1        |             |
| G=8.0 [m]        | 5.0         | 21.0        |             |
| G=12.0 [m]       | 5.3         | 20.5        |             |
| G=16.0 [m]       | 5.0         | 20.5        |             |
| G=20.0 [m]       | 5.0         | 18.0        |             |
| G=24.0 [m]       | 4.7         | 17.4        |             |
| G=28.0 [m]       | 5.1         | 15.0        |             |
| G=32.0 [m]       | 5.1         | 15.9        |             |
| G= 36.0 [m]      | 5.4         | 13.5        |             |
| G = 40.0 [m]     | 5.0         | 14.5        |             |
| G = 44.0 [m]     | 4.6         | 14.4        |             |
| G = 48.0 [m]     | 4.4         | 15.6        |             |
| G = 52.0 [m]     | 4.7         | 11.5        |             |
| G = 56.0 [m]     | 4.4         | 12.4        |             |
| G = 60.0 [m]     | 4.1         | 13.0        |             |
| G = 64.0 [m]     | 4.0         | 13.6        |             |
| G = 68.0 [m]     | 3.6         | 13.5        |             |
| G=72.0 [m]       | 3.5         | 13.6        |             |
| Velocità [m/sec] | 311.7       | 1425.5      | 2612.5      |
| Descrizione      |             |             |             |

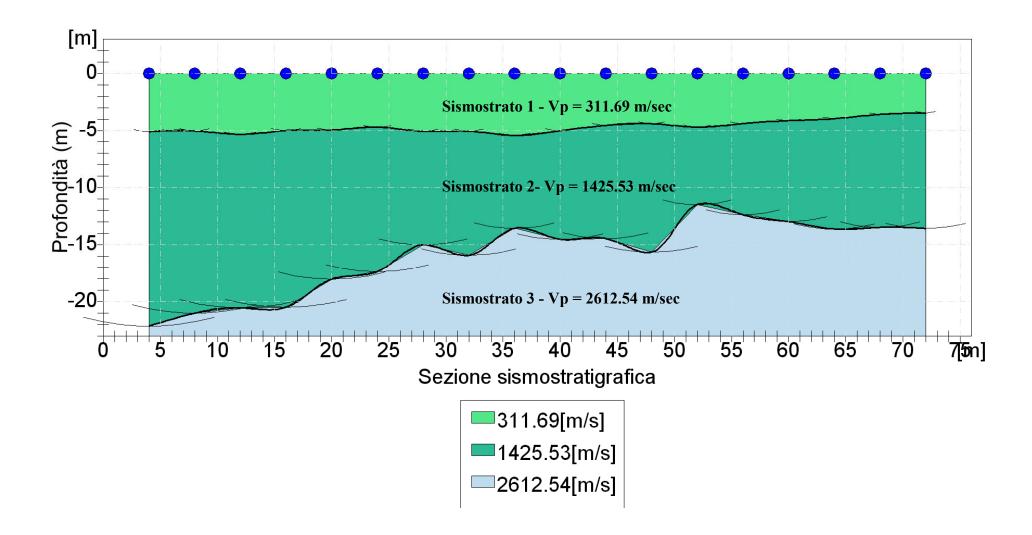
### Altri parametri geotecnici

61


|                      | Sismostrato 1 | Sismostrato 2 | Sismostrato 3 |
|----------------------|---------------|---------------|---------------|
| Coefficiente Poisson | 0.39          | 0.38          | 0.38          |
| Densità [kg/m³]      | 1600.00       | 1700.00       | 1800.00       |
| Vp [m/s]             | 311.69        | 1425.53       | 2612.54       |
| Vs [m/s]             | 132.36        | 627.15        | 1149.37       |
| G0 [MPa]             | 28.03         | 668.64        | 2377.87       |
| Ed [Mpa]             | 155.44        | 3454.64       | 12285.68      |
| M0 [MPa]             | 127.41        | 2786.00       | 9907.81       |
| Ey [Mpa]             | 77.92         | 1845.45       | 6562.93       |

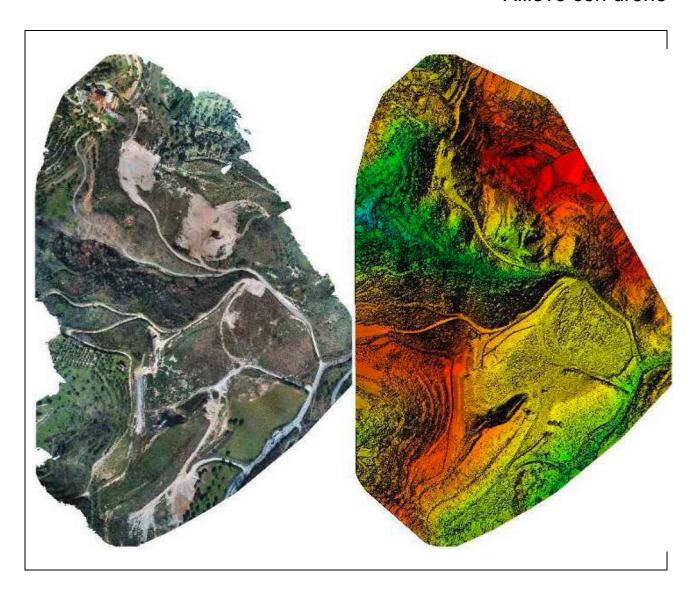
G0: Modulo di deformazione al taglio;

Ed: Modulo edometrico;


M0: Modulo di compressibilità volumetrica;

Ey: Modulo di Young;




### Indice

Dati generali
Geometria geofoni
Dati battute
Dromocrone
Dromocrone traslate
Interpretazione col metodo G,.R.M.
Altri parametri geotecnici
Indice
Sezione sismostratigrafica



# Allegato 4

### Rilievo con drone



# Quality Report

| Project                                | Cava                                                  |
|----------------------------------------|-------------------------------------------------------|
| Average Ground Sampling Distance (GSO) | 3.06 cm / 1.20 in                                     |
| Area Covered                           | 0.263 km² / 26.3026 ha / 0.10 sq. mi. / 65.0288 acres |

### **Quality Check**

| O Images            | median of 77171 keypoints per image                                               |  |
|---------------------|-----------------------------------------------------------------------------------|--|
| Dataset             | 350 out of 351 images calibrated (99%), all images enabled                        |  |
| Camera Optimization | 1.1% relative difference between initial and optimized internal camera parameters |  |
| Matching            | median of 284382 matches per calibrated image                                     |  |

### Preview

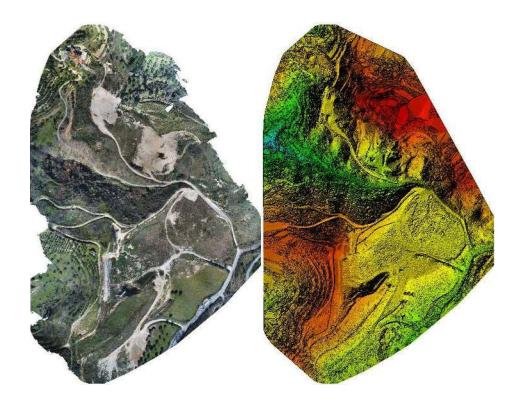



Figure I: Olthomosaic and the corresponding sparse Digital Surface Model (DSM) before densification,

### **Calibration Details**

0

| Number of Calibrated Images | 351 out of 351 |  |  |
|-----------------------------|----------------|--|--|
| Number of Geolocated Images | 351 out of 351 |  |  |

Initial Image Positions O

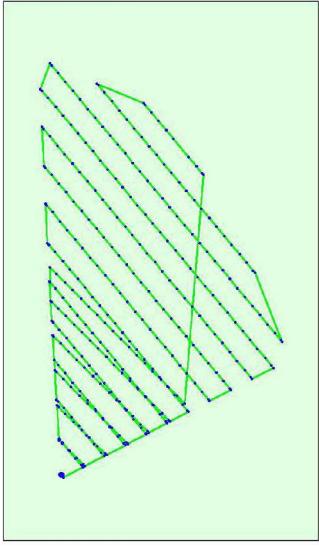



Figure 2: Top view of the initial image position. The green line follows the position of the images in time starting from the large blue dot.

Computed Image/GCPs/Manual Tie Points Positions THE CONTRACTOR OF A

Uncertainty ellipses IOOx magnified

Figt.re 3: **Iffset between** Initial (blue dots) and computed (green dots) image positions as well as the offset between the GCPs initial positions (blue crosses) and their computed positions (green crosses) in the top-view (XY plane), front-view (XZ plane), and side-view (YZ plane). Red dots indicate disabled or uncallbrated bnages. **Dark**green ellipses indicate the absolute position **Incertainty** of the bundle block adjustment result,

### Absolute camera position and orientation uncertainties

|       |       |       |       | Omega [degree] | Phi [degree] | Kappa [degreel |
|-------|-------|-------|-------|----------------|--------------|----------------|
| Mean  | 0.022 | 0.022 | 0.040 | 0.017          | 0.014        | 0.006          |
| Sigma | 0.004 | 0.004 | 0.010 | 0.001          | 0.002        | 0.001          |

### Overlap

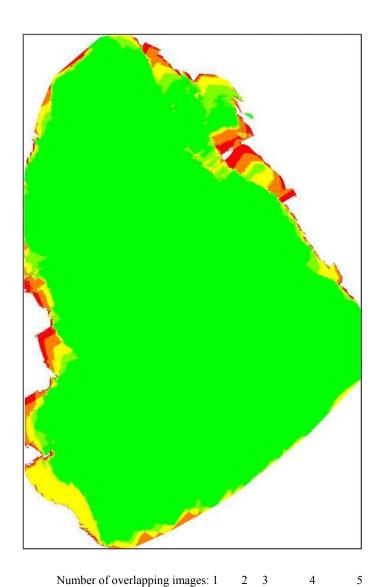


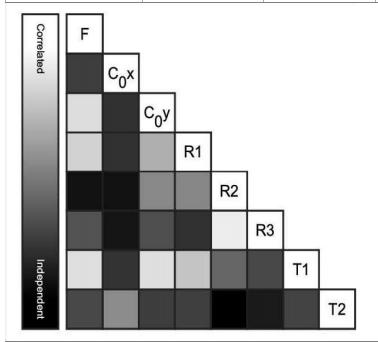

Figure 4: Number of overlapping images computed for each pixel of the orthomosaic.

Red ald yellow areas indicate low overlap for which poor results may be generated. Green areas indicate an overlap of over 5 images for every pixel.

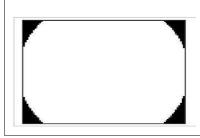
Good quality results will generated as long as the number of keypoint matches is also sufficient for these areas (see Figure 5 for keypoint matches).

### **Bundle Block Adjustment Details**

0


| Number of 2D Keypoint Observations for Bundle Block Adjustment | 9843675 |
|----------------------------------------------------------------|---------|
| Number of 3D Points for Bundle Block Adjustment                | 3286291 |
| Mean Reprojection Error [pixels)                               | 0.223   |

### **Internal Camera Parameters**


### 5344x4016 (RGB). Sensor Dimensions: 5.985 [mm] x 4.498 [mm]

EXF ID: 5344x4016.

|                       | Focal<br>Length                | Principal Point x             | Principal<br>Pointy           | RI         |       |       | TI         | T2    |
|-----------------------|--------------------------------|-------------------------------|-------------------------------|------------|-------|-------|------------|-------|
| Initial Values        | 3634.470 [pixel]<br>4.071 [mm) | 2662230 [pixel]<br>2982 [mm)  | 1976.860 [pixel]<br>2214 [mm] | -<br>0.249 | 0.020 | 0.012 | 0.000      | 0.001 |
| Optimized Values      | 3594.293 [pixel]<br>4.026 [mm] | 2654758 [pixel]<br>2.973 [mm] | 2002.067 [pixel]<br>2242 [mm] | -<br>0.240 | 0.004 | 0.023 | -<br>0.000 | 0.000 |
| Uncertainties (Sigma) | 1.089 [pixel]<br>0.001 [mm]    | 0.083 [pixel]<br>0.000 [mm]   | 0.138 [pixel]<br>0.000 [mm]   | 0.000      | 0.000 | 0.000 | 0.000      | 0.000 |

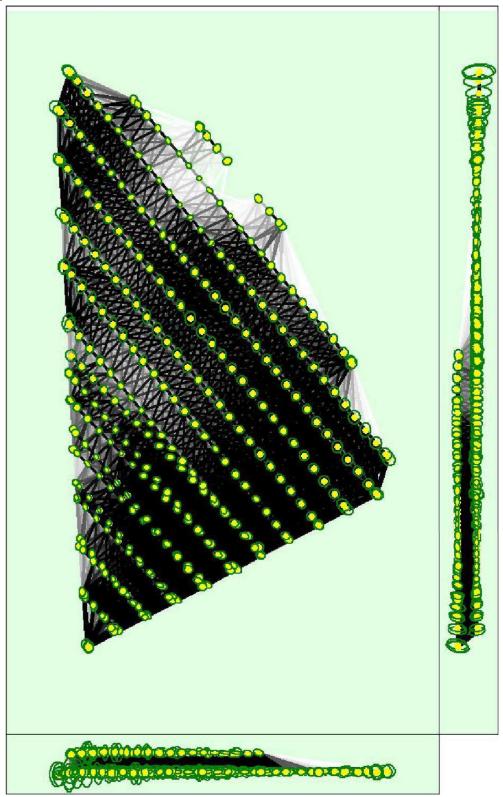


The correlation between camera internal parameters determined by the bundle adjustment. White indicates a full correlation between the parameters, ie. any change in one can be fully compensated by the other Black indicates that the parameter is completely independent, and is not affected by other parameters.



The number of Automatic Tie Points (ATPs) per pixel, averaged over all images of the camera model, is color coded between black and white. White indicates that, on average, more than 16 ATPs have been extracted at the pixel location. Black indicates that, on average, O ATPs have been extracted at the pixel location. Click on the image to the see the average direction and magnitude of the reprojection error for each pixel. Note that the vectors are scaled for better visualization. The scale bar indicates the magnitude of I pixel error.

### **2D Keypoints Table**


|        | Number of 2D Keypoints per Image | Number of Matched 2D Keypoints per Image |
|--------|----------------------------------|------------------------------------------|
| Median | 77171                            | 28438                                    |
| Min    | 44538                            | 1798                                     |
| Max    | 80278                            | 46311                                    |
| Mean   | 75115                            | 28125                                    |

### **3D Points from 2D Keypoint Matches**

| 3D Points f  | rom 2D Keypoint Matches     |
|--------------|-----------------------------|
|              | Number of 3D Points bserved |
| In 2 Images  | 2224149                     |
| In 3 Images  | 526065                      |
| In 4 Images  | 195583                      |
| In 5 Images  | 100397                      |
| In 6 Images  | 59852                       |
| In 7 Images  | 39787                       |
| In 8 Images  | 28007                       |
| In 9 Images  | 20518                       |
| In 10 Images | 15591                       |
| In II Images | 12192                       |
| In 12 Images | 9887                        |
| In 13 Images | 7840                        |
| In 14 Images | 6686                        |
| In 15 Images | 5404                        |
| In 16 Images | 4593                        |
| In 17 Images | 3827                        |
| In 18 Images | 3182                        |
| In 19 Images | 2961                        |
| In 20 Images | 2344                        |
| In 21 Images | 2074                        |
| In 22 Images | 1885                        |
| In 23 Images | 1661                        |
| In 24 Images | 1385                        |
| In 25 Images | 1208                        |
| In 26 Images | 1071                        |
| In 27 Images | 897                         |
| In 28 Images | 797                         |
| In 29 Images | 713                         |
| In 30 Images | 631                         |
| In 31 Images | 575                         |
| In 32 Images | 559                         |
| In 33 Images | 454                         |
| In 34 Images | 372                         |
| In 35 Images | 303                         |
| In 36 Images | 292                         |
| In 37 Images | 257                         |
| In 38 Images | 222                         |
| In 39 Images | 227                         |
| In 40 Images | 189                         |
| In 41 Images | 148                         |
| In 42 Images | 161                         |
|              |                             |

| In 43 Images              | 141 |
|---------------------------|-----|
| In 44 Images              | 110 |
| In 45 Images              | 99  |
| In 46 Images              | 103 |
| In 47 Images              | 95  |
|                           |     |
| In 48 Images              | 68  |
| In 49 Images              | 71  |
| In 50 Images              | 74  |
| In 51 Images              | 53  |
| In 52 Images              | 68  |
| In 53 Images              | 48  |
| In 54 Images              | 39  |
| In 55 Images              | 44  |
| In 56 Images              | 25  |
| In 57 Images              | 27  |
| In 58 Images              | 20  |
| In 59 Images              | 26  |
| In 60 Images              | 18  |
| In 61 Images              | 22  |
| In 62 Images              | 16  |
| In 63 Images              | 18  |
| In 64 Images              | 15  |
| In 65 Images              | 12  |
| In 66 Images              | 15  |
| In 67 Images              | 9   |
| In 68 Images              | 12  |
| In 69 Images              | 9   |
| In 70 Images              | 9   |
| In 71 Images              | 9   |
| In 72 Images              | 2   |
| In 73 Images              | 5   |
| In 74 Images              | 10  |
| In 75 Images              | 9   |
| In 76 Images              | 5   |
| In 77 Images              | 4   |
| In 78 Images              | 4   |
| In 79 Images              | 4   |
| In 80 Images              | 7   |
| In 81 Images              | 2   |
| In 82 Images              | 6   |
| In 83 Images              | 4   |
| In 84 Images In 85 Images | 3   |
| In 87 Images              | 3   |
| In 89 Images              | 1   |
|                           |     |

# **2D Keypoint Matches**



U ncertainty ellipses 500x magnified

Number of matches

#### 25 222 444 666 888 1111 1333 1555 1777 2000

Figure 5: Computed image positions with links between matched images, The darkness of the links indicates the number of matched 20 keypoints between the images.

Bright links indicate YÆak links and require manual tie points or more images, Dark green ellipses indicate the relative camera position uncertainty

of the bundle block adjustment result.

# Relative camera position and orientation uncertainties

|       |       |       |       | Omega [degree] | Phi [degree] | Kappa [degree] |
|-------|-------|-------|-------|----------------|--------------|----------------|
| Mean  | 0.009 | 0.009 | 0.009 | 0.006          | 0.008        | 0.002          |
| Sigma | 0.002 | 0.002 | 0.005 | 0.002          | 0.003        | 0.001          |

# **Initial Processing Details**

# **System Information**

| Hardware            | CPU: Intel(R) Core(TM) 7-7700K CPU<br>②3.30GHz RAM: 32GB<br>CPU: 3x NVIDIA GeForce GTX 970 (Driver: 2521.14.1935) |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------|--|
| Operating<br>System | Windows 10 Pro, 64-bit                                                                                            |  |

**Coordinate Systems** 

| Image Coordinate System  | WGS 84 (EGM 96 Geoid)                |
|--------------------------|--------------------------------------|
| Output Coordinate System | WGS 84 / UTM zone 33N (EGM 96 Geoid) |

**Processing Options** 

| Detected Template              | No Template Available                                                                                                                |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| Keypoints Image Scale          | Full, Image Scale: I                                                                                                                 |  |
| Advanced: Matching Image Pairs | Aerial Grid or Corridor                                                                                                              |  |
| Advanced: Matching Strategy    | Use Geometrically Verified Matching: no                                                                                              |  |
| Advanced: Keypoint Extraction  | Targeted Number of Keypoints: Automatic                                                                                              |  |
| Advanced: Calibration          | Calibration Method: Standard<br>Internal Parameters Optimization: All<br>External Parameters Optimization: All<br>Rematch: Auto, yes |  |

# Point Cloud Densification details

**Processing Options** 

| Image Scale                  | multiscale, 1/2 (Half image size,<br>Default) |
|------------------------------|-----------------------------------------------|
| Point Density                | Optimal                                       |
| Minimum Number of<br>Matches | 4                                             |

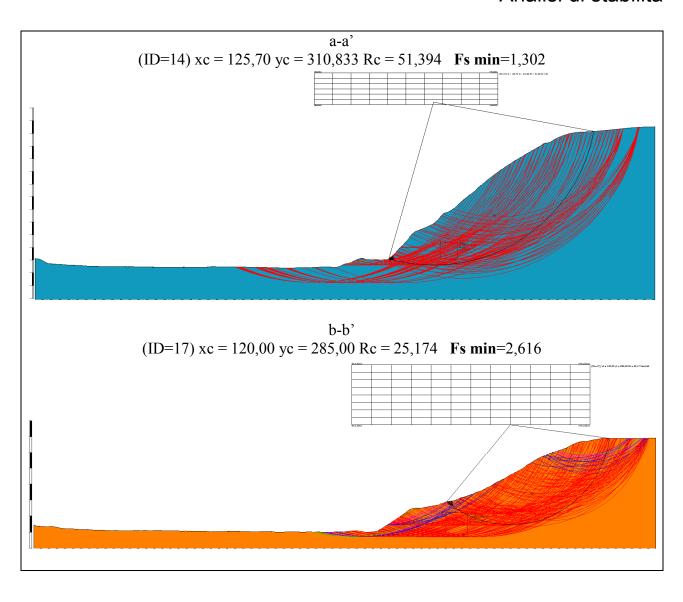
0

| 3D Textured Mesh<br>Generation      | yes                                                            |
|-------------------------------------|----------------------------------------------------------------|
| 3D Textured Mesh<br>Settings:       | Resolution: Medium Resolution<br>(default) Color Balancing: no |
| LOD                                 | Generated: no                                                  |
| Advanced: 3D Textured Mesh Settings | Sample Density Divider: I                                      |
| Advanced: Image Groups              | groupl                                                         |
| Advanced: Use<br>Processing Area    | yes                                                            |
| Advanced: Use<br>Annotations        | yes                                                            |

# Results

| Number of Processed Clusters  | 9        |
|-------------------------------|----------|
| Number of Generated Tiles     |          |
| Number of 3D Densified Points | 27002768 |
| Average Density (per rn³)     | 122.36   |

# DSM, Orthomosaic and Index Details


Processing Options

| DSM and Orthomosaic Resolution | 1 x GSD (3.06 [cm/pixell)                                                                                         |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------|--|
| DSM Filters                    | Noise Filtering: yes<br>Surface Smoothing: yes, Type: Sharp                                                       |  |
| Raster DSM                     | Generated: yes<br>Method: Inverse Distance Weighting<br>Merge Tiles: yes                                          |  |
| Orthomosaic                    | Generated: yes<br>Merge Tiles: yes<br>GeoTIFF Without Transparency: no<br>Google Maps Tiles and KML: no           |  |
| Grid DSM                       | Generated: yes, Spacing [cm]: 100                                                                                 |  |
| Raster DTM                     | Generated: yes<br>Merge Tiles: yes                                                                                |  |
| DTM Resolution                 | 5 x GSD (3.06 [cm/pixel])                                                                                         |  |
| Contour Lines Generation       | Generated: yes Contour Base [m]: 0 Elevation Interval [m]: 5 Resolution [cm]: 50 Minimum Line Size [vertices]: 10 |  |

0

# Allegato 5

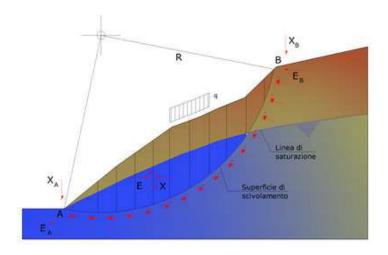
# Analisi di stabilità



#### Relazione di calcolo

#### **Definizione**

Per pendio s'intende una porzione di versante naturale il cui profilo originario è stato modificato da interventi artificiali rilevanti rispetto alla stabilità. Per frana s'intende una situazione di instabilità che interessa versanti naturali e coinvolgono volumi considerevoli di terreno.


#### Metodo equilibrio limite (LEM)

Il metodo dell'equilibrio limite consiste nello studiare l'equilibrio di un corpo rigido, costituito dal pendio e da una superficie di scorrimento di forma qualsiasi (linea retta, arco di cerchio, spirale logaritmica); da tale equilibrio vengono calcolate le tensioni da taglio  $(\tau)$  e confrontate con la resistenza disponibile  $(\tau_f)$ , valutata secondo il criterio di rottura di Coulomb, da tale confronto ne scaturisce la prima indicazione sulla stabilità attraverso il coefficiente di sicurezza:

$$F = \tau_f / \tau$$

Tra i metodi dell'equilibrio limite alcuni considerano l'equilibrio globale del corpo rigido (Culman), altri a causa della non omogeneità dividono il corpo in conci considerando l'equilibrio di ciascuno (Fellenius, Bishop, Janbu ecc.).

Di seguito vengono discussi i metodi dell'equilibrio limite dei conci.



#### Metodo dei conci

La massa interessata dallo scivolamento viene suddivisa in un numero conveniente di conci. Se il numero dei conci è pari a *n*, il problema presenta le seguenti incognite:

- n valori delle forze normali N; agenti sulla base di ciascun concio;
- n valori delle forze di taglio alla base del concio T<sub>i</sub>;
- (n-1) forze normali E; agenti sull'interfaccia dei conci;
- (n-1) forze tangenziali X<sub>i</sub> agenti sull'interfaccia dei conci;
- n valori della coordinata a che individua il punto di applicazione delle E<sub>1</sub>;
- (n-1) valori della coordinata che individua il punto di applicazione delle X<sub>i</sub>;
- una incognita costituita dal fattore di sicurezza F.

Complessivamente le incognite sono (6n-2). Mentre le equazioni a disposizione sono:

- equazioni di equilibrio dei momenti n;
- equazioni di equilibrio alla traslazione verticale n;
- equazioni di equilibrio alla traslazione orizzontale n;
- equazioni relative al criterio di rottura n.

Totale numero di equazioni 4n.

Il problema è staticamente indeterminato ed il grado di indeterminazione è pari a :

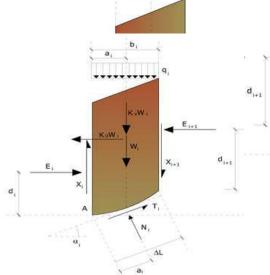
$$i = (6n-2)-(4n) = 2n-2$$

Il grado di indeterminazione si riduce ulteriormente a (n-2) in quanto si fa l'assunzione che  $N_i$  sia applicato nel punto medio della striscia. Ciò equivale ad ipotizzare che le tensioni normali totali siano uniformemente distribuite.

I diversi metodi che si basano sulla teoria dell'equilibrio limite si differenziano per il modo in cui vengono eliminate le (n-2) indeterminazioni.

#### Metodo di Fellenius (1927)

Con questo metodo (valido solo per superfici di scorrimento di forma circolare) vengono trascurate le forze di interstriscia pertanto le incognite si riducono a:


- n valori delle forze normali N<sub>i</sub>;
- n valori delle forze da taglio T<sub>i</sub>;
- 1 fattore di sicurezza.

Incognite (2n+1).

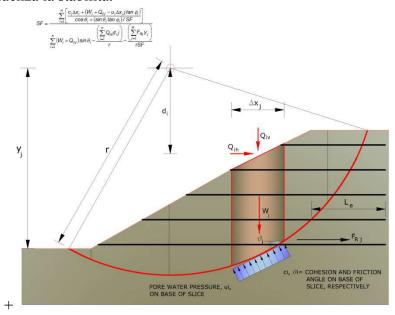
Le equazioni a disposizione sono:

- n equazioni di equilibrio alla traslazione verticale;
- n equazioni relative al criterio di rottura;
- equazione di equilibrio dei momenti globale.

$$F = \frac{\Sigma \left\{ \begin{array}{l} c_i \times l_i + (W_i \times cos\alpha_i - u_i \times l_i) \times tan \ \phi_i \end{array} \right\}}{\Sigma W_i \times sin\alpha_i}$$



Questa equazione è semplice da risolvere ma si è trovato che fornissce risultati conservativi (fattori di sicurezza bassi) soprattutto per superfici profonde.


### Ricerca della superficie di scorrimento critica

In presenza di mezzi omogenei non si hanno a disposizione metodi per individuare la superficie di scorrimento critica ed occorre esaminarne un numero elevato di potenziali superfici. Nel caso vengano ipotizzate superfici di forma circolare, la ricerca diventa più semplice, in quanto dopo aver posizionato una maglia dei centri costituita da m righe e n colonne saranno esaminate tutte le superfici aventi per centro il generico nodo della maglia m×n e raggio variabile in un determinato range di valori tale da esaminare superfici cinematicamente ammissibili.

#### Elemento Rinforzo

I Rinforzi sono degli elementi orizzontali, la loro messa in opera conferisce al terreno un incremento della resistenza allo scorrimento .

Se l'elemento di rinforzo interseca la superficie di scorrimento, la forza resistente sviluppata dall'elemento entra nell'equazione di equilibrio del singolo concio, in caso contrario l'elemento di rinforzo non ne influenza la stabilità.



Le verifiche di natura interna hanno lo scopo di valutare il livello di stabilità dell'ammasso rinforzato, quelle calcolate sono la verifica a rottura dell'elemento di rinforzo per trazione e la verifica a sfilamento (*Pullout*). Il parametro che fornisce la resistenza a trazione del rinforzo, T<sub>Allow</sub>, si calcola dalla resistenza nominale del materiale con cui è realizzato il rinforzo ridotto da opportuni coefficienti che tengono conto dell'aggressività del terreno, danneggiamento per effetto creep e danneggiamento per installazione.

L' altro parametro è la resistenza a sfilamento (*Pullout* ) che viene calcolata attraverso la seguente relazione:

$$T_{Pullout} = 2 \cdot \text{Le} \cdot \sigma'_{V} \cdot f_{b} \cdot tan(\delta)$$

Per geosintetico a maglie chiuse:

$$f_b = \frac{\tan(\delta)}{\tan(\omega)}$$

dove:

δ Rappresenta l'angolo di attrito tra terreno e rinforzo;

T<sub>Pullout</sub> Resistenza mobilitata da un rinforzo ancorato per una lunghezza L<sub>e</sub> all'interno della parte stabile del terreno;

Le Lunghezza di ancoraggio del rinforzo all'interno della parte stabile;

fb Coefficiente di *Pullout*;

 $\sigma'_{V}$  Tensione verticale, calcolata alla profondità media del tratto di rinforzo ancorato al terreno.

Ai fini della verifica si sceglie il valore minimo tra  $T_{Allow}$  e  $T_{Pullout}$ , la verifica interna verrà soddisfatta se la forza trasmessa dal rinforzo generata a tergo del tratto rinforzato non supera il valore della T.

# VERIFICHE DI STABILITA' DI PENDIO SEZ. a-a'

Le condizioni di stabilità del versante in oggetto sono state analizzate con riferimento al modello geologico-tecnico della Figura sottostante, utilizzando il software SLOPE della GEOSTRU e facendo riferimento a quanto prescritto dalle NTC 2018.

Il versante in esame è stato considerato costituito da un unico strato di terreno caratterizzato dai parametri fisico-meccanici riportati in Tabella 1.

| Strato | Peso dell'unità di<br>volume di terreno<br>γ [kN/m³] | Peso dell'unità di<br>volume di terreno<br>saturo<br>γ <sub>sat</sub> [kN/m³] | Coesione<br>c [Kg/cm2] | Angolo di resistenza a<br>taglio<br>φ [°] |
|--------|------------------------------------------------------|-------------------------------------------------------------------------------|------------------------|-------------------------------------------|
| 1      | 17                                                   | 21                                                                            | 0,8                    | 35                                        |

Tabella 1 – Sintesi dei parametri geotecnici di calcolo utilizzati nelle analisi di stabilità.

Conformemente alla normativa vigente, il calcolo del fattore di sicurezza è stato eseguito analizzando un numero sufficiente di superfici circolari, cinematicamente ammissibili, generate automaticamente dal software a partire da una maglia di centri definita dall'utente.

Di seguito si riportano i risultati ottenuti nell'analisi delle condizioni di equilibrio limite del versante in esame per la configurazione di calcolo considerata e riportata nella Figura sottostante.

In particolare si evidenzia l'assenza di potenziali superfici di scorrimento caratterizzate da un fattore di sicurezza minore o uguale ad 1 (instabili) e localizza la superficie di scorrimento con fattore di sicurezza minimo (Fs=1.3).

Si precisa che le opere previste in progetto, localizzate in corrispondenza della base del versante, non pregiudicano le condizioni di stabilità del versante stesso.

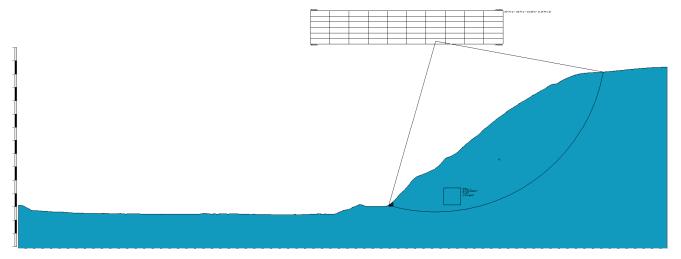



Figura SEZ. a-a' – Superficie di rottura a fattore di sicurezza minimo (Fs=1.3).

# Analisi di stabilità dei pendii con: FELLENIUS (1936)

=====

| Lat./Long.                                        | 39,51377/16,277755 |  |
|---------------------------------------------------|--------------------|--|
| Calcolo eseguito secondo                          | [A2+M1+R2]         |  |
| Numero di strati                                  | 1,0                |  |
| Numero dei conci                                  | 10,0               |  |
| Grado di sicurezza ritenuto accettabile           | 1,1                |  |
| Coefficiente parziale resistenza                  | 1,0                |  |
| Parametri geotecnici da usare. Angolo di attrito: | Picco              |  |
| Analisi                                           | Condizione drenata |  |
| Superficie di forma circolare                     |                    |  |

\_\_\_\_\_

\_\_\_\_

#### Maglia dei Centri

\_\_\_\_\_

\_\_\_\_

| Ascissa vertice sinistro inferiore xi  | 88,0 m  |
|----------------------------------------|---------|
| Ordinata vertice sinistro inferiore yi | 310,0 m |
| Ascissa vertice destro superiore xs    | 146,0 m |
| Ordinata vertice destro superiore ys   | 320,0 m |
| Passo di ricerca                       | 10,0    |
| Numero di celle lungo x                | 10,0    |
| Numero di celle lungo y                | 6,0     |

\_\_\_\_

#### Coefficienti sismici [N.T.C.]

\_\_\_\_\_

\_\_\_\_

Dati generali

Tipo opera: 2 - Opere ordinarie Classe d'uso: Classe II

Vita nominale: 50,0 [anni] Vita di riferimento: 50,0 [anni]

#### Parametri sismici su sito di riferimento

Categoria sottosuolo: Categoria topografica: T1

| S.L.         | TR      | ag        | F0   | TC*   |
|--------------|---------|-----------|------|-------|
| Stato limite | Tempo   | $[m/s^2]$ | [-]  | [sec] |
|              | ritorno |           |      |       |
|              | [anni]  |           |      |       |
| S.L.O.       | 30,0    | 0,7       | 2,29 | 0,28  |
| S.L.D.       | 50,0    | 0,92      | 2,27 | 0,3   |
| S.L.V.       | 475,0   | 2,69      | 2,43 | 0,37  |
| S.L.C.       | 975,0   | 3,6       | 2,48 | 0,4   |

### Coefficienti sismici orizzontali e verticali

Opera: Stabilità dei pendii e Fondazioni

| S.L.         | amax      | beta | kh     | kv     |
|--------------|-----------|------|--------|--------|
| Stato limite | $[m/s^2]$ | [-]  | [-]    | [sec]  |
| S.L.O.       | 1,05      | 0,2  | 0,0214 | 0,0107 |
| S.L.D.       | 1,38      | 0,2  | 0,0281 | 0,0141 |
| S.L.V.       | 3,4971    | 0,28 | 0,0999 | 0,0499 |
| S.L.C.       | 4,1534    | 0,28 | 0,1186 | 0,0593 |

Coefficiente azione sismica orizzontale Coefficiente azione sismica verticale 0,1 0,0 5

Vertici profilo

| Vertici profilo<br>N | X                                     | V           |
|----------------------|---------------------------------------|-------------|
| IN                   |                                       | y           |
| 1                    | m                                     | m<br>261.44 |
| 1 2                  | 0,0                                   | 261,44      |
| 2                    | 0,15                                  | 261,43      |
| 3                    | 0,31                                  | 261,43      |
| 4                    | 0,46                                  | 261,43      |
| 5                    | 0,61                                  | 261,43      |
| 6                    | 0,76                                  | 261,42      |
| 7                    | 0,92                                  | 261,41      |
| 8                    | 1,07                                  | 261,38      |
| 9                    | 1,22                                  | 261,34      |
| 10                   | 1,38                                  | 261,29      |
| 11                   | 1,53                                  | 261,23      |
| 12                   | 1,68                                  | 261,16      |
| 13                   | 1,84                                  | 261,07      |
| 14                   | 1,99                                  | 260,98      |
| 15                   | 2,14                                  | 260,89      |
| 16                   | 2,29                                  | 260,8       |
| 17                   | 2,45                                  | 260,72      |
| 18                   | 2,6                                   | 260,65      |
| 19                   | 2,75                                  | 260,59      |
| 20                   | 2,91                                  | 260,52      |
| 21                   | 3,06                                  | 260,45      |
| 22                   | 3,21                                  | 260,36      |
| 23                   | 3,37                                  | 260,26      |
| 24                   | 3,52                                  | 260,17      |
| 25                   | 3,67                                  | 260,07      |
| 26                   | 3,82                                  | 259,98      |
| 27                   | 3,98                                  | 259,92      |
| 28                   | 4,13                                  | 259,89      |
| 29                   | 4,28                                  | 259,88      |
| 30                   | 4,44                                  | 259,87      |
| 31                   | 4,59                                  | 259,86      |
| 32                   | 4,74                                  | 259,85      |
| 33                   | 4,9                                   | 259,85      |
| 34                   | 5,05                                  | 259,84      |
| •                    | · · · · · · · · · · · · · · · · · · · |             |

| 35  | 5,2          | 259,83 |
|-----|--------------|--------|
| 36  | 5,35         | 259,82 |
| 37  | 5,51         | 259,82 |
| 38  | 5,66         | 259,81 |
| 39  | 5,81         | 259,8  |
| 40  | 5,97         | 259,79 |
| 41  | 6,12         | 259,77 |
| 42  | 6,27         | 259,76 |
| 43  | 6,43         | 259,75 |
| 44  | 6,58         | 259,73 |
| 45  | 6,73         | 259,72 |
| 46  | 6,88         | 259,7  |
| 47  | 7,04         | 259,69 |
| 48  | 7,19         | 259,68 |
| 49  | 7,34         | 259,67 |
| 50  | 7,5          | 259,66 |
| 51  | 7,65         | 259,66 |
| 52  | 7,8          | 259,65 |
| 53  | 7,96         | 259,63 |
| 54  |              | 259,62 |
| 55  | 8,11         | 259,61 |
| 56  | 8,26         |        |
| 57  | 8,41         | 259,6  |
|     | 8,57         | 259,59 |
| 58  | 8,72         | 259,58 |
| 59  | 8,87         | 259,57 |
| 60  | 9,03         | 259,56 |
| 61  | 9,18         | 259,56 |
| 62  | 9,33         | 259,55 |
| 63  | 9,48         | 259,53 |
| 64  | 9,64         | 259,52 |
| 65  | 9,79         | 259,5  |
| 66  | 9,94<br>10,1 | 259,49 |
| 67  |              | 259,47 |
| 68  | 10,25        | 259,46 |
| 69  | 10,4         | 259,46 |
| 70  | 10,56        | 259,46 |
| 71  | 10,71        | 259,46 |
| 72  | 10,86        | 259,46 |
| 73  | 11,01        | 259,45 |
| 74  | 11,17        | 259,44 |
| 75  | 11,32        | 259,43 |
| 76  | 11,47        | 259,43 |
| 77  | 11,63        | 259,42 |
| 78  | 11,78        | 259,42 |
| 79  | 11,93        | 259,41 |
| 80  | 12,09        | 259,4  |
| 81  | 12,24        | 259,39 |
| 82  | 12,39        | 259,38 |
| 83  | 12,54        | 259,37 |
| 84  | 12,7         | 259,37 |
| 85  | 12,85        | 259,37 |
| 0.5 | 12,00        | 20,01  |

| 86         | 13,0           | 259,37                                |
|------------|----------------|---------------------------------------|
| 87         | 13,16          | 259,37                                |
| 88         | 13,31          | 259,37                                |
| 89         | 13,46          | 259,37                                |
| 90         | 13,62          | 259,36                                |
| 91         | 13,77          | 259,36                                |
| 92         | 13,92          | 259,35                                |
| 93         | 14,07          | 259,34                                |
| 94         | 14,23          | 259,33                                |
| 95         | 14,38          | 259,31                                |
| 96         | 14,53          | 259,3                                 |
| 97         | 14,69          | 259,29                                |
| 98         | 14,84          | 259,27                                |
| 99         | 14,99          | 259,26                                |
| 100        | 15,15          | 259,25                                |
| 101        | 15,3           | 259,23                                |
| 102        | 15,45          | 259,22                                |
| 103        | 15,6           | 259,21                                |
| 104        | 15,76          | 259,2                                 |
| 105        | 15,76          | 259,19                                |
| 106        | 16,06          | 259,19                                |
| 107        | 16,22          | 259,18                                |
| 108        | 16,37          | 259,14                                |
| 109        | 16,52          | 259,12                                |
| 110        | 16,68          | 259,1                                 |
| 111        | 16,83          | 259,09                                |
| 112        | 16,98          | 259,09                                |
| 113        | 17,13          | 259,07                                |
| 114        | 17,13          | 259,06                                |
| 115        | 17,44          | 259,06                                |
| 116        | 17,59          | 259,06                                |
| 117        |                | 259,06                                |
| 117        | 17,75<br>17,9  | 259,06                                |
| 118        |                | ·                                     |
|            | 18,05          | 259,07<br>259,07                      |
| 120        | 18,21          | · · · · · · · · · · · · · · · · · · · |
| 121        | 18,36<br>18,51 | 259,08<br>259,09                      |
| 123        | 18,66          | 259,08                                |
| 123        |                | 259,08                                |
| 124        | 18,82<br>18,97 | 259,07                                |
| 125        | 19,12          |                                       |
|            |                | 259,08                                |
| 127        | 19,28          | 259,08                                |
| 128<br>129 | 19,43          | 259,07                                |
|            | 19,58          | 259,05                                |
| 130        | 19,73          | 259,03                                |
| 131        | 19,89          | 259,02                                |
| 132        | 20,04          | 259,0                                 |
| 133        | 20,19          | 259,0                                 |
| 134        | 20,35          | 259,0                                 |
| 135        | 20,5           | 259,01                                |
| 136        | 20,65          | 259,01                                |

| 137 | 20,81 | 259,02                                |
|-----|-------|---------------------------------------|
| 138 | 20,96 | 259,02                                |
| 139 | 21,11 | 259,03                                |
| 140 | 21,26 | 259,03                                |
| 141 | 21,42 | 259,03                                |
| 142 | 21,57 | 259,03                                |
| 143 | 21,72 | 259,02                                |
| 144 | 21,88 | 259,02                                |
| 145 | 22,03 | 259,02                                |
| 146 | 22,18 | 259,02                                |
| 147 | 22,34 | 259,01                                |
| 148 | 22,49 | 259,0                                 |
| 149 | 22,64 | 258,99                                |
| 150 | 22,79 | 258,98                                |
| 151 | 22,95 | 258,98                                |
| 152 | 23,1  | 258,98                                |
| 153 | 23,25 | 258,99                                |
| 154 | 23,41 | 259,0                                 |
| 155 | 23,56 | 258,98                                |
| 156 | 23,71 | 258,98                                |
| 157 | 23,87 | 258,98                                |
| 158 | 24,02 | 258,96                                |
| 159 | 24,17 | 258,96                                |
| 160 |       | · · · · · · · · · · · · · · · · · · · |
|     | 24,32 | 258,94                                |
| 161 | 24,48 | 258,94                                |
| 162 | 24,63 | 258,94                                |
| 163 | 24,78 | 258,94                                |
| 164 | 24,94 | 258,94                                |
| 165 | 25,09 | 258,94                                |
| 166 | 25,24 | 258,94                                |
| 167 | 25,4  | 258,94                                |
| 168 | 25,55 | 258,94                                |
| 169 | 25,7  | 258,94                                |
| 170 | 25,85 | 258,94                                |
| 171 | 26,01 | 258,94                                |
| 172 | 26,16 | 258,95                                |
| 173 | 26,31 | 258,95                                |
| 174 | 26,47 | 258,95                                |
| 175 | 26,62 | 258,95                                |
| 176 | 26,77 | 258,95                                |
| 177 | 26,93 | 258,95                                |
| 178 | 27,08 | 258,94                                |
| 179 | 27,23 | 258,93                                |
| 180 | 27,38 | 258,93                                |
| 181 | 27,54 | 258,93                                |
| 182 | 27,69 | 258,92                                |
| 183 | 27,84 | 258,93                                |
| 184 | 28,0  | 258,92                                |
| 185 | 28,15 | 258,92                                |
| 186 | 28,3  | 258,92                                |
| 187 | 28,45 | 258,92                                |
|     |       | · · · · · · · · · · · · · · · · · · · |

| 188 | 28,61                                 | 258,92 |
|-----|---------------------------------------|--------|
| 189 | 28,76                                 | 258,92 |
| 190 | 28,91                                 | 258,92 |
| 191 | 29,07                                 | 258,91 |
| 192 | 29,22                                 | 258,92 |
| 193 | 29,37                                 | 258,92 |
| 194 | 29,53                                 | 258,92 |
| 195 | 29,68                                 | 258,92 |
| 196 | 29,83                                 | 258,92 |
| 197 | 29,98                                 | 258,92 |
| 198 | 30,14                                 | 258,93 |
| 199 | 30,29                                 | 258,94 |
| 200 | 30,44                                 | 258,93 |
| 201 | 30,6                                  | 258,93 |
| 202 | 30,75                                 | 258,94 |
| 203 | 30,9                                  | 258,93 |
| 204 | 31,06                                 | 258,92 |
| 205 | 31,21                                 | 258,91 |
| 206 | 31,36                                 | 258,89 |
| 207 | 31,51                                 | 258,88 |
| 208 | 31,67                                 | 258,87 |
| 209 | 31,82                                 | 258,85 |
| 210 | 31,97                                 | 258,84 |
| 211 | 32,13                                 | 258,83 |
| 212 | 32,13                                 | 258,83 |
| 213 | 32,43                                 | 258,83 |
| 213 |                                       | ,      |
| 214 | 32,59                                 | 258,83 |
|     | 32,74                                 | 258,84 |
| 216 | 32,89                                 | 258,85 |
| 217 | 33,04                                 | 258,86 |
| 218 | 33,2                                  | 258,86 |
| 219 | 33,35                                 | 258,87 |
| 220 | 33,5                                  | 258,87 |
| 221 | 33,66                                 | 258,87 |
| 222 | 33,81                                 | 258,87 |
| 223 | 33,96                                 | 258,86 |
| 224 | 34,12                                 | 258,85 |
| 225 | 34,27                                 | 258,85 |
| 226 | 34,42                                 | 258,85 |
| 227 | 34,57                                 | 258,85 |
| 228 | 34,73                                 | 258,86 |
| 229 | 34,88                                 | 258,86 |
| 230 | 35,03                                 | 258,86 |
| 231 | 35,19                                 | 258,85 |
| 232 | 35,34                                 | 258,85 |
| 233 | 35,49                                 | 258,85 |
| 234 | 35,65                                 | 258,86 |
| 235 | 35,8                                  | 258,86 |
| 236 | 35,95                                 | 258,87 |
| 237 | 36,1                                  | 258,86 |
| 238 | 36,26                                 | 258,85 |
|     | · · · · · · · · · · · · · · · · · · · | ·      |

| 239 | 36,41 | 258,85 |
|-----|-------|--------|
| 240 | 36,56 | 258,83 |
| 241 | 36,72 | 258,82 |
| 242 | 36,87 | 258,81 |
| 243 | 37,02 | 258,81 |
| 244 | 37,17 | 258,81 |
| 245 | 37,33 | 258,8  |
| 246 | 37,48 | 258,81 |
| 247 | 37,63 | 258,8  |
| 248 | 37,79 | 258,8  |
| 249 | 37,94 | 258,8  |
| 250 | 38,09 | 258,79 |
| 251 | 38,25 | 258,79 |
| 252 | 38,4  | 258,78 |
| 253 | 38,55 | 258,78 |
| 254 | 38,7  | 258,77 |
| 255 | 38,86 | 258,77 |
| 256 | 39,01 | 258,76 |
| 257 | 39,16 | 258,75 |
| 258 | 39,32 | 258,75 |
| 259 | 39,47 | 258,74 |
| 260 | 39,62 | 258,74 |
| 261 | 39,78 | 258,74 |
| 262 | 39,93 | 258,74 |
| 263 | 40,08 | 258,74 |
| 264 | 40,23 | 258,75 |
| 265 | 40,39 | 258,76 |
| 266 | 40,54 | 258,76 |
| 267 | 40,69 | 258,77 |
| 268 | 40,85 | 258,77 |
| 269 | 41,0  | 258,76 |
| 270 | 41,15 | 258,76 |
| 271 | 41,31 | 258,77 |
| 272 | 41,46 | 258,76 |
| 273 | 41,61 | 258,76 |
| 274 | 41,76 | 258,75 |
| 275 | 41,92 | 258,75 |
| 276 | 42,07 | 258,74 |
| 277 | 42,22 | 258,75 |
| 278 | 42,38 | 258,75 |
| 279 | 42,53 | 258,74 |
| 280 | 42,68 | 258,74 |
| 281 | 42,84 | 258,74 |
| 282 | 42,99 | 258,73 |
| 283 | 43,14 | 258,73 |
| 284 | 43,14 | 258,73 |
| 285 | 43,45 | 258,73 |
| 286 | 43,43 | 258,73 |
| 287 | 43,75 | 258,74 |
| 288 | 43,73 | 258,75 |
| 289 | 44,06 | 258,76 |
| 209 | 44,00 | 238,70 |

| 290 | 44,21 | 258,77 |
|-----|-------|--------|
| 291 | 44,37 | 258,78 |
| 292 | 44,52 | 258,78 |
| 293 | 44,67 | 258,78 |
| 294 | 44,82 | 258,78 |
| 295 | 44,98 | 258,78 |
| 296 | 45,13 | 258,77 |
| 297 | 45,28 | 258,75 |
| 298 | 45,44 | 258,75 |
| 299 | 45,59 | 258,75 |
| 300 | 45,74 | 258,75 |
| 301 | 45,89 | 258,76 |
| 302 | 46,05 | 258,77 |
| 303 | 46,2  | 258,78 |
| 304 | 46,35 | 258,79 |
| 305 | 46,51 | 258,8  |
| 306 | 46,66 | 258,8  |
| 307 | 46,81 | 258,8  |
| 308 | 46,97 | 258,81 |
| 309 | 47,12 | 258,81 |
| 310 | 47,27 | 258,79 |
| 311 | 47,42 | 258,79 |
| 312 | 47,58 | 258,79 |
| 313 | 47,73 | 258,78 |
| 314 | 47,88 | 258,78 |
| 315 | 48,04 | 258,78 |
| 316 | 48,19 | 258,78 |
| 317 | 48,34 | 258,77 |
| 318 | 48,5  | 258,77 |
| 319 | 48,65 | 258,77 |
| 320 | 48,8  | 258,76 |
| 321 | 48,95 | 258,76 |
| 322 | 49,11 | 258,75 |
| 323 | 49,26 | 258,76 |
| 324 | 49,41 | 258,76 |
| 325 | 49,57 | 258,76 |
| 326 | 49,72 | 258,77 |
| 327 | 49,87 | 258,77 |
| 328 | 50,03 | 258,77 |
| 329 | 50,18 | 258,77 |
| 330 | 50,33 | 258,77 |
| 331 | 50,48 | 258,77 |
| 332 | 50,64 | 258,77 |
| 333 | 50,79 | 258,77 |
| 334 | 50,94 | 258,77 |
| 335 | 51,1  | 258,77 |
| 336 | 51,25 | 258,77 |
| 337 | 51,4  | 258,78 |
| 338 | 51,56 | 258,78 |
| 339 | 51,71 | 258,78 |
| 340 | 51,86 | 258,78 |
|     | j     | J      |

| 341 | 52,01          | 258,78 |
|-----|----------------|--------|
| 342 | 52,17          | 258,78 |
| 343 | 52,32          | 258,78 |
| 344 | 52,47          | 258,78 |
| 345 | 52,63          | 258,79 |
| 346 | 52,78          | 258,78 |
| 347 | 52,93          | 258,78 |
| 348 | 53,09          | 258,78 |
| 349 | 53,24          | 258,78 |
| 350 | 53,39          | 258,78 |
| 351 | 53,54          | 258,77 |
| 352 | 53,7           | 258,77 |
| 353 | 53,85          | 258,77 |
| 354 | 54,0           | 258,78 |
| 355 | 54,16          | 258,79 |
| 356 | 54,31          | 258,8  |
| 357 | 54,46          | 258,81 |
| 358 | 54,62          | 258,82 |
| 359 | 54,77          | 258,83 |
| 360 | 54,92          | 258,84 |
| 361 | 55,07          | 258,85 |
| 362 | 55,23          | 258,87 |
| 363 | 55,38          | 258,89 |
| 364 | 55,53          | 258,92 |
| 365 | 55,69          | 258,94 |
| 366 | 55,84          | 258,96 |
| 367 |                | 258,90 |
| 368 | 55,99<br>56,14 | 258,98 |
| 369 |                |        |
|     | 56,3<br>56.45  | 258,98 |
| 370 | 56,45          | 258,98 |
| 371 | 56,6           | 258,96 |
| 372 | 56,76          | 258,94 |
| 373 | 56,91          | 258,92 |
| 374 | 57,06          | 258,9  |
| 375 | 57,22          | 258,88 |
| 376 | 57,37          | 258,86 |
| 377 | 57,52          | 258,85 |
| 378 | 57,67          | 258,84 |
| 379 | 57,83          | 258,83 |
| 380 | 57,98          | 258,82 |
| 381 | 58,13          | 258,81 |
| 382 | 58,29          | 258,81 |
| 383 | 58,44          | 258,82 |
| 384 | 58,59          | 258,83 |
| 385 | 58,75          | 258,83 |
| 386 | 58,9           | 258,84 |
| 387 | 59,05          | 258,85 |
| 388 | 59,2           | 258,85 |
| 389 | 59,36          | 258,84 |
| 390 | 59,51          | 258,83 |
| 391 | 59,66          | 258,82 |

| 392 | 59,82 | 258,82 |
|-----|-------|--------|
| 393 | 59,97 | 258,82 |
| 394 | 60,12 | 258,83 |
| 395 | 60,28 | 258,83 |
| 396 | 60,43 | 258,83 |
| 397 | 60,58 | 258,84 |
| 398 | 60,73 | 258,84 |
| 399 | 60,89 | 258,85 |
| 400 | 61,04 | 258,85 |
| 401 | 61,19 | 258,85 |
| 402 | 61,35 | 258,85 |
| 403 | 61,5  | 258,85 |
| 404 | 61,65 | 258,85 |
| 405 | 61,81 | 258,85 |
| 406 | 61,96 | 258,85 |
| 407 | 62,11 | 258,85 |
| 408 | 62,26 | 258,86 |
| 409 | 62,42 | 258,86 |
| 410 | 62,57 | 258,85 |
| 411 | 62,72 | 258,84 |
| 412 | 62,88 | 258,83 |
| 413 | 63,03 | 258,82 |
| 414 | 63,18 | 258,83 |
| 415 | 63,34 | 258,83 |
| 416 | 63,49 | 258,84 |
| 417 | 63,64 | 258,84 |
| 418 | 63,79 | 258,85 |
| 419 | 63,95 | 258,86 |
| 420 | 64,1  | 258,86 |
| 421 | 64,25 | 258,86 |
| 422 | 64,41 | 258,86 |
| 423 | 64,56 | 258,85 |
| 424 | 64,71 | 258,85 |
| 425 | 64,86 | 258,85 |
| 426 | 65,02 | 258,84 |
| 427 | 65,17 | 258,84 |
| 428 | 65,32 | 258,84 |
| 429 | 65,48 | 258,84 |
| 430 | 65,63 | 258,84 |
| 431 | 65,78 | 258,85 |
| 432 | 65,94 | 258,84 |
| 433 | 66,09 | 258,83 |
| 434 | 66,24 | 258,84 |
| 435 | 66,39 | 258,82 |
| 436 | 66,55 | 258,82 |
| 437 | 66,7  | 258,79 |
| 438 | 66,85 | 258,78 |
| 439 | 67,01 | 258,77 |
| 440 | 67,16 | 258,76 |
| 441 | 67,31 | 258,76 |
| 441 | 67,47 | 258,76 |
| 442 | 0/,4/ | 238,70 |

| 443        | 67,62 | 258,76 |
|------------|-------|--------|
| 444        | 67,77 | 258,77 |
| 445        | 67,92 | 258,77 |
| 446        | 68,08 | 258,77 |
| 447        | 68,23 | 258,76 |
| 448        | 68,38 | 258,75 |
| 449        | 68,54 | 258,75 |
| 450        | 68,69 | 258,75 |
| 451        | 68,84 | 258,75 |
| 452        | 69,0  | 258,75 |
| 453        | 69,15 | 258,75 |
| 454        | 69,3  | 258,75 |
| 455        | 69,45 | 258,74 |
| 456        | 69,61 | 258,73 |
| 457        | 69,76 | 258,72 |
| 458        | 69,91 | 258,72 |
| 459        | 70,07 | 258,72 |
| 460        | 70,22 | 258,72 |
| 461        | 70,37 | 258,72 |
| 462        | 70,53 | 258,74 |
| 463        | 70,68 | 258,75 |
| 464        | 70,83 | 258,74 |
| 465        | 70,98 | 258,76 |
| 466        | 71,14 | 258,76 |
| 467        | 71,14 | 258,74 |
| 468        | 71,44 | 258,74 |
| 469        | 71,6  | 258,72 |
| 470        | 71,75 | 258,72 |
| 471        | 71,73 | 258,71 |
| 472        | 72,06 | 258,72 |
| 473        | 72,21 | 258,72 |
| 474        | 72,36 | 258,71 |
| 475        | 72,51 | 258,71 |
| 476        | 72,67 | 258,71 |
| 477        |       | 258,71 |
|            | 72,82 | ,      |
| 478<br>479 | 72,97 | 258,71 |
| 480        | 73,13 | 258,7  |
| 480        | 73,28 | 258,68 |
|            | 73,43 | 258,67 |
| 482        | 73,58 | 258,66 |
| 483        | 73,74 | 258,65 |
| 484        | 73,89 | 258,65 |
| 485        | 74,04 | 258,64 |
| 486        | 74,2  | 258,64 |
| 487        | 74,35 | 258,64 |
| 488        | 74,5  | 258,63 |
| 489        | 74,66 | 258,63 |
| 490        | 74,81 | 258,63 |
| 491        | 74,96 | 258,64 |
| 492        | 75,11 | 258,65 |
| 493        | 75,27 | 258,65 |

| 494 | 75,42                                 | 258,65           |
|-----|---------------------------------------|------------------|
| 495 | 75,57                                 | 258,65           |
| 496 | 75,73                                 | 258,64           |
| 497 | 75,88                                 | 258,64           |
| 498 | 76,03                                 | 258,63           |
| 499 | 76,19                                 | 258,62           |
| 500 | 76,34                                 | 258,61           |
| 501 | 76,49                                 | 258,6            |
| 502 | 76,64                                 | 258,59           |
| 503 | 76,8                                  | 258,57           |
| 504 | 76,95                                 | 258,56           |
| 505 | 77,1                                  | 258,55           |
| 506 | 77,26                                 | 258,55           |
| 507 | 77,41                                 | 258,54           |
| 508 | 77,56                                 | 258,54           |
| 509 | 77,72                                 | 258,54           |
| 510 | 77,87                                 | 258,53           |
| 511 | 78,02                                 | 258,53           |
| 512 | 78,17                                 | 258,53           |
| 513 | 78,33                                 | 258,52           |
| 514 | 78,48                                 | 258,52           |
| 515 | 78,63                                 | 258,52           |
| 516 | 78,79                                 | 258,52           |
| 517 | 78,94                                 | 258,52           |
| 518 |                                       | 258,52           |
| 519 | 79,09                                 | 258,52           |
| 520 | 79,25                                 |                  |
| 521 | 79,4<br>79,55                         | 258,52<br>258,53 |
| 522 | · · · · · · · · · · · · · · · · · · · |                  |
|     | 79,7                                  | 258,53           |
| 523 | 79,86                                 | 258,53           |
| 524 | 80,01                                 | 258,53           |
| 525 | 80,16                                 | 258,54           |
| 526 | 80,32                                 | 258,55           |
| 527 | 80,47                                 | 258,55           |
| 528 | 80,62                                 | 258,55           |
| 529 | 80,78                                 | 258,56           |
| 530 | 80,93                                 | 258,55           |
| 531 | 81,08                                 | 258,55           |
| 532 | 81,23                                 | 258,55           |
| 533 | 81,39                                 | 258,55           |
| 534 | 81,54                                 | 258,55           |
| 535 | 81,69                                 | 258,55           |
| 536 | 81,85                                 | 258,56           |
| 537 | 82,0                                  | 258,57           |
| 538 | 82,15                                 | 258,58           |
| 539 | 82,31                                 | 258,59           |
| 540 | 82,46                                 | 258,6            |
| 541 | 82,61                                 | 258,61           |
| 542 | 82,76                                 | 258,61           |
| 543 | 82,92                                 | 258,62           |
| 544 | 83,07                                 | 258,62           |

| 545 | 83,22 | 258,62 |
|-----|-------|--------|
| 546 | 83,38 | 258,62 |
| 547 | 83,53 | 258,62 |
| 548 | 83,68 | 258,61 |
| 549 | 83,83 | 258,61 |
| 550 | 83,99 | 258,61 |
| 551 | 84,14 | 258,6  |
| 552 | 84,29 | 258,59 |
| 553 | 84,45 | 258,58 |
| 554 | 84,6  | 258,58 |
| 555 | 84,75 | 258,58 |
| 556 | 84,91 | 258,59 |
| 557 | 85,06 | 258,6  |
| 558 | 85,21 | 258,61 |
| 559 | 85,36 | 258,63 |
| 560 | 85,52 | 258,64 |
| 561 | 85,67 | 258,65 |
| 562 | 85,82 | 258,65 |
| 563 | 85,98 | 258,66 |
| 564 | 86,13 | 258,68 |
| 565 | 86,28 | 258,68 |
| 566 | 86,44 | 258,67 |
| 567 | 86,59 | 258,66 |
| 568 | 86,74 | 258,66 |
| 569 | 86,89 | 258,66 |
| 570 | 87,05 | 258,67 |
| 571 | 87,03 | 258,68 |
| 572 | 87,35 | 258,7  |
| 573 | 87,51 | 258,72 |
| 574 | 87,66 | 258,72 |
| 575 | 87,81 | 258,73 |
| 576 | 87,97 | 258,73 |
| 577 | 88,12 | 258,74 |
| 578 | 88,27 | 258,74 |
|     |       | ·      |
| 579 | 88,42 | 258,74 |
| 580 | 88,58 | 258,74 |
| 581 | 88,73 | 258,74 |
| 582 | 88,88 | 258,75 |
| 583 | 89,04 | 258,77 |
| 584 | 89,19 | 258,78 |
| 585 | 89,34 | 258,79 |
| 586 | 89,5  | 258,8  |
| 587 | 89,65 | 258,81 |
| 588 | 89,8  | 258,83 |
| 589 | 89,95 | 258,83 |
| 590 | 90,11 | 258,84 |
| 591 | 90,26 | 258,85 |
| 592 | 90,41 | 258,85 |
| 593 | 90,57 | 258,86 |
| 594 | 90,72 | 258,87 |
| 595 | 90,87 | 258,84 |

| 596 | 91,03         | 258,83 |
|-----|---------------|--------|
| 597 | 91,18         | 258,83 |
| 598 | 91,33         | 258,82 |
| 599 | 91,48         | 258,82 |
| 600 | 91,64         | 258,82 |
| 601 | 91,79         | 258,82 |
| 602 | 91,94         | 258,83 |
| 603 | 92,1          | 258,83 |
| 604 | 92,25         | 258,83 |
| 605 | 92,4          | 258,83 |
| 606 | 92,55         | 258,83 |
| 607 | 92,71         | 258,83 |
| 608 | 92,86         | 258,82 |
| 609 | 93,01         | 258,82 |
| 610 | 93,17         | 258,81 |
| 611 | 93,32         | 258,81 |
| 612 | 93,47         | 258,8  |
| 613 | 93,63         | 258,8  |
| 614 | 93,78         | 258,8  |
| 615 | 93,93         | 258,79 |
| 616 | 94,08         | 258,79 |
| 617 | 94,24         | 258,79 |
| 618 | 94,39         | 258,79 |
| 619 | 94,54         | 258,79 |
| 620 | 94,7          | 258,79 |
| 621 | 94,85         | 258,79 |
| 622 | 95,0          | 258,79 |
| 623 | 95,16         | 258,8  |
| 624 | 95,31         | 258,82 |
| 625 | 95,46         | 258,85 |
| 626 | 95,61         | 258,89 |
| 627 | 95,77         | 258,94 |
| 628 | 95,92         | 258,99 |
| 629 | 96,07         | 259,05 |
| 630 | 96,23         | 259,12 |
| 631 | 96,38         | 259,19 |
| 632 | 96,53         | 259,26 |
| 633 | 96,69         | 259,34 |
| 634 | 96,84         | 259,41 |
| 635 | 96,99         | 259,47 |
| 636 | 97,14         | 259,54 |
| 637 | 97,3          | 259,61 |
| 638 | 97,45         | 259,67 |
| 639 | 97,6          | 259,74 |
| 640 | 97,76         | 259,8  |
| 641 | 97,70         | 259,85 |
| 642 | 98,06         | 259,9  |
| 643 | 98,22         | 259,94 |
| 644 | 98,37         | 259,98 |
| 645 | 98,52         | 260,01 |
| 646 | 98,67         | 260,04 |
| 040 | <i>7</i> 0,07 | 200,04 |

| 647 | 98,83  | 260,06 |
|-----|--------|--------|
| 648 | 98,98  | 260,09 |
| 649 | 99,13  | 260,11 |
| 650 | 99,29  | 260,14 |
| 651 | 99,44  | 260,17 |
| 652 | 99,59  | 260,21 |
| 653 | 99,75  | 260,26 |
| 654 | 99,9   | 260,33 |
| 655 | 100,05 | 260,42 |
| 656 | 100,2  | 260,5  |
| 657 | 100,36 | 260,59 |
| 658 | 100,51 | 260,68 |
| 659 | 100,66 | 260,78 |
| 660 | 100,82 | 260,86 |
| 661 | 100,97 | 260,94 |
| 662 | 101,12 | 261,01 |
| 663 | 101,27 | 261,06 |
| 664 | 101,43 | 261,13 |
| 665 | 101,58 | 261,17 |
| 666 | 101,73 | 261,22 |
| 667 | 101,89 | 261,27 |
| 668 | 102,04 | 261,33 |
| 669 | 102,19 | 261,4  |
| 670 | 102,35 | 261,46 |
| 671 | 102,5  | 261,53 |
| 672 | 102,65 | 261,6  |
| 673 | 102,8  | 261,63 |
| 674 | 102,96 | 261,64 |
| 675 | 103,11 | 261,64 |
| 676 | 103,26 | 261,62 |
| 677 | 103,42 | 261,59 |
| 678 | 103,57 | 261,55 |
| 679 | 103,72 | 261,49 |
| 680 | 103,88 | 261,43 |
| 681 | 104,03 | 261,35 |
| 682 | 104,18 | 261,28 |
| 683 | 104,33 | 261,22 |
| 684 | 104,49 | 261,16 |
| 685 | 104,49 | 261,12 |
| 686 | 104,79 | 261,11 |
| 687 | 104,75 | 261,11 |
| 688 | 104,93 | 261,12 |
| 689 | 105,25 | 261,13 |
| 690 | 105,23 | 261,14 |
| 691 | 105,56 | 261,15 |
| 692 | 105,71 | 261,16 |
| 693 | 105,71 | 261,16 |
| 694 | 105,80 | 261,17 |
| 695 | 106,02 | 261,17 |
| 696 | 106,17 | 261,17 |
| 697 | 106,48 | 261,16 |
| 09/ | 100,48 | 201,10 |

| 698         106,8         261,13           699         106,78         261,14           700         106,94         261,13           701         107,09         261,13           702         107,24         261,13           703         107,39         261,13           704         107,55         261,13           705         107,7         261,12           706         107,85         261,11           707         108,01         261,1           709         108,31         261,1           709         108,31         261,1           710         108,47         261,08           712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722 <th>(00</th> <th>106.62</th> <th>261.15</th> | (00 | 106.62                                | 261.15 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------------|--------|
| 700         106,94         261,14           701         107,09         261,13           702         107,24         261,13           703         107,39         261,13           704         107,55         261,12           706         107,85         261,11           707         108,01         261,11           708         108,16         261,1           709         108,31         261,1           710         108,47         261,0           711         108,62         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723 <td>698</td> <td>106,63</td> <td>261,15</td> | 698 | 106,63                                | 261,15 |
| 701         107,09         261,13           702         107,24         261,13           703         107,39         261,13           704         107,55         261,12           706         107,85         261,11           707         108,01         261,11           708         108,16         261,1           709         108,31         261,1           710         108,47         261,1           711         108,62         261,09           712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725 <td></td> <td>-</td> <td></td>               |     | -                                     |        |
| 702         107,24         261,13           703         107,39         261,13           704         107,55         261,12           706         107,85         261,11           707         108,01         261,11           708         108,16         261,1           709         108,31         261,1           710         108,47         261,1           711         108,62         261,09           712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726 <td></td> <td></td> <td>,</td>               |     |                                       | ,      |
| 703         107,39         261,13           704         107,55         261,13           705         107,7         261,12           706         107,85         261,11           707         108,01         261,11           708         108,16         261,1           709         108,31         261,1           710         108,47         261,1           711         108,62         261,09           712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726                                               |     |                                       |        |
| 704         107,55         261,13           705         107,7         261,12           706         107,85         261,11           707         108,01         261,11           708         108,16         261,1           709         108,31         261,1           710         108,47         261,0           711         108,62         261,09           712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,44           729                                               |     |                                       |        |
| 705         107,7         261,12           706         107,85         261,11           707         108,01         261,11           708         108,16         261,1           709         108,31         261,1           710         108,47         261,0           711         108,62         261,09           712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,3           730                                                |     |                                       | ,      |
| 706         107,85         261,11           707         108,01         261,11           708         108,16         261,1           709         108,31         261,1           710         108,47         261,1           711         108,62         261,09           712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,1           724         110,61         261,11           725         110,76         261,12           726         110,91         261,17           727         111,07         261,17           728         111,37         261,3           730                                                |     |                                       |        |
| 707         108,01         261,11           708         108,16         261,1           709         108,31         261,1           710         108,47         261,1           711         108,62         261,09           712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,1           724         110,61         261,1           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,33           730         111,52         261,38           731                                                | 705 |                                       | 261,12 |
| 708         108,16         261,1           709         108,31         261,1           710         108,47         261,1           711         108,62         261,09           712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,33           730         111,52         261,38           731         111,68         261,49           732 <td></td> <td>107,85</td> <td></td>          |     | 107,85                                |        |
| 709         108,31         261,1           710         108,47         261,1           711         108,62         261,09           712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,33           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733 <td>707</td> <td>108,01</td> <td></td>      | 707 | 108,01                                |        |
| 710         108,47         261,1           711         108,62         261,09           712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733 <td>708</td> <td>108,16</td> <td>261,1</td> | 708 | 108,16                                | 261,1  |
| 711         108,62         261,09           712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,3           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734 <td>709</td> <td>108,31</td> <td>261,1</td> | 709 | 108,31                                | 261,1  |
| 712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734 <td>710</td> <td>108,47</td> <td>261,1</td>  | 710 | 108,47                                | 261,1  |
| 712         108,77         261,08           713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734 <td>711</td> <td>108,62</td> <td>261,09</td> | 711 | 108,62                                | 261,09 |
| 713         108,92         261,08           714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,33           730         111,52         261,3           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737 </td <td></td> <td>-</td> <td></td>        |     | -                                     |        |
| 714         109,08         261,08           715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,33           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,83         261,61           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738 </td <td></td> <td>108,92</td> <td></td>   |     | 108,92                                |        |
| 715         109,23         261,08           716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,3           730         111,52         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           740 <td></td> <td></td> <td>,</td>               |     |                                       | ,      |
| 716         109,38         261,08           717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,31           728         111,22         261,33           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740 <td></td> <td></td> <td></td>               |     |                                       |        |
| 717         109,54         261,08           718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,33           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741 <td></td> <td></td> <td></td>               |     |                                       |        |
| 718         109,69         261,08           719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,12           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741 <td></td> <td></td> <td></td>                |     |                                       |        |
| 719         109,84         261,09           720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         263,78           742 <td></td> <td>,</td> <td></td>               |     | ,                                     |        |
| 720         110,0         261,1           721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,12           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,33           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744 <td></td> <td>· ·</td> <td></td>            |     | · ·                                   |        |
| 721         110,15         261,1           722         110,3         261,1           723         110,45         261,11           724         110,61         261,12           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744 </td <td></td> <td></td> <td></td>         |     |                                       |        |
| 722         110,3         261,1           723         110,45         261,11           724         110,61         261,12           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745<                                          |     |                                       |        |
| 723         110,45         261,11           724         110,61         261,12           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745         113,82         263,38           74                                          |     | -                                     |        |
| 724         110,61         261,11           725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745         113,82         263,38           746         113,97         263,57           74                                          |     | , , , , , , , , , , , , , , , , , , , |        |
| 725         110,76         261,12           726         110,91         261,14           727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745         113,82         263,38           746         113,97         263,57           747         114,13         263,76                                                                                                   |     | ,                                     |        |
| 726         110,91         261,14           727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745         113,82         263,38           746         113,97         263,57           747         114,13         263,76                                                                                                   |     | -                                     |        |
| 727         111,07         261,17           728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745         113,82         263,38           746         113,97         263,57           747         114,13         263,76                                                                                                                                               |     | -                                     |        |
| 728         111,22         261,23           729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745         113,82         263,38           746         113,97         263,57           747         114,13         263,76                                                                                                                                                                                           |     |                                       |        |
| 729         111,37         261,3           730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745         113,82         263,38           746         113,97         263,57           747         114,13         263,76                                                                                                                                                                                                                                       |     |                                       |        |
| 730         111,52         261,38           731         111,68         261,49           732         111,83         261,61           733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745         113,82         263,38           746         113,97         263,57           747         114,13         263,76                                                                                                                                                                                                                                                                                  |     |                                       | ,      |
| 731       111,68       261,49         732       111,83       261,61         733       111,98       261,74         734       112,14       261,87         735       112,29       261,99         736       112,44       262,12         737       112,6       262,24         738       112,75       262,37         739       112,9       262,49         740       113,05       262,62         741       113,21       262,78         742       113,36       262,92         743       113,51       263,06         744       113,67       263,21         745       113,82       263,38         746       113,97       263,57         747       114,13       263,76                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | 111,57                                | 201,3  |
| 732       111,83       261,61         733       111,98       261,74         734       112,14       261,87         735       112,29       261,99         736       112,44       262,12         737       112,6       262,24         738       112,75       262,37         739       112,9       262,49         740       113,05       262,62         741       113,21       262,78         742       113,36       262,92         743       113,51       263,06         744       113,67       263,21         745       113,82       263,38         746       113,97       263,57         747       114,13       263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                                       |        |
| 733         111,98         261,74           734         112,14         261,87           735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745         113,82         263,38           746         113,97         263,57           747         114,13         263,76                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                       |        |
| 734       112,14       261,87         735       112,29       261,99         736       112,44       262,12         737       112,6       262,24         738       112,75       262,37         739       112,9       262,49         740       113,05       262,62         741       113,21       262,78         742       113,36       262,92         743       113,51       263,06         744       113,67       263,21         745       113,82       263,38         746       113,97       263,57         747       114,13       263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                       |        |
| 735         112,29         261,99           736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745         113,82         263,38           746         113,97         263,57           747         114,13         263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                       | ,      |
| 736         112,44         262,12           737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745         113,82         263,38           746         113,97         263,57           747         114,13         263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     |                                       |        |
| 737         112,6         262,24           738         112,75         262,37           739         112,9         262,49           740         113,05         262,62           741         113,21         262,78           742         113,36         262,92           743         113,51         263,06           744         113,67         263,21           745         113,82         263,38           746         113,97         263,57           747         114,13         263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |                                       | ·      |
| 738       112,75       262,37         739       112,9       262,49         740       113,05       262,62         741       113,21       262,78         742       113,36       262,92         743       113,51       263,06         744       113,67       263,21         745       113,82       263,38         746       113,97       263,57         747       114,13       263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |                                       |        |
| 739     112,9     262,49       740     113,05     262,62       741     113,21     262,78       742     113,36     262,92       743     113,51     263,06       744     113,67     263,21       745     113,82     263,38       746     113,97     263,57       747     114,13     263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |                                       |        |
| 740     113,05     262,62       741     113,21     262,78       742     113,36     262,92       743     113,51     263,06       744     113,67     263,21       745     113,82     263,38       746     113,97     263,57       747     114,13     263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                       |        |
| 741     113,21     262,78       742     113,36     262,92       743     113,51     263,06       744     113,67     263,21       745     113,82     263,38       746     113,97     263,57       747     114,13     263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                       |        |
| 742     113,36     262,92       743     113,51     263,06       744     113,67     263,21       745     113,82     263,38       746     113,97     263,57       747     114,13     263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                       | ·      |
| 743     113,51     263,06       744     113,67     263,21       745     113,82     263,38       746     113,97     263,57       747     114,13     263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                       | ·      |
| 744       113,67       263,21         745       113,82       263,38         746       113,97       263,57         747       114,13       263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                       |        |
| 745       113,82       263,38         746       113,97       263,57         747       114,13       263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |                                       |        |
| 746 113,97 263,57<br>747 114,13 263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |     | -                                     |        |
| 747 114,13 263,76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |                                       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                       |        |
| 748 114,28 263,95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | ,                                     | ,      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 748 | 114,28                                | 263,95 |

| 749        | 114,43           | 264,15           |
|------------|------------------|------------------|
| 750        | 114,58           | 264,33           |
| 751        | 114,74           | 264,51           |
| 752        | 114,89           | 264,67           |
| 753        | 115,04           | 264,83           |
| 754        | 115,2            | 264,99           |
| 755        | 115,35           | 265,13           |
| 756        | 115,5            | 265,27           |
| 757        | 115,66           | 265,41           |
| 758        | 115,81           | 265,54           |
| 759        | 115,96           | 265,68           |
| 760        | 116,11           | 265,83           |
| 761        | 116,27           | 265,99           |
| 762        | 116,42           | 266,16           |
| 763        | 116,57           | 266,33           |
| 764        | 116,73           | 266,5            |
| 765        | 116,88           | 266,66           |
| 766        | 117,03           | 266,83           |
| 767        | 117,19           | 267,0            |
| 768        | 117,19           | 267,17           |
| 769        | 117,49           | 267,35           |
| 770        | 117,64           | 267,54           |
| 771        | 117,8            | 267,73           |
| 772        | 117,95           | 267,93           |
| 773        | 118,1            | 268,14           |
| 774        | 118,26           | 268,35           |
| 775        | 118,41           | 268,56           |
| 776        | 118,56           | 268,76           |
| 777        | 118,72           | 268,95           |
| 778        | 118,87           | 269,11           |
| 779        | 119,02           | 269,27           |
| 780        | 119,02           | 269,41           |
| 780        | 119,17           | 269,53           |
|            | ·                | ·                |
| 782<br>783 | 119,48           | 269,64<br>269,75 |
| 784        | 119,63<br>119,79 |                  |
| 785        | 119,79           | 269,85<br>269,95 |
| 786        | 120,09           | ,                |
| 787        | 120,09           | 270,04<br>270,12 |
| 788        | 120,24           | 270,12           |
| 789        | 120,4            | 270,18           |
|            | ·                | ,                |
| 790<br>791 | 120,7            | 270,27           |
| 791        | 120,86           | 270,32           |
| 793        | 121,01<br>121,16 | 270,37           |
|            | 121,16           | 270,43           |
| 794        |                  | 270,48           |
| 795<br>796 | 121,47           | 270,54           |
|            | 121,62           | 270,67           |
| 797        | 121,77           | 270,67           |
| 798        | 121,93           | 270,73           |
| 799        | 122,08           | 270,79           |

| 800 | 122,23 | 270,86 |
|-----|--------|--------|
| 801 | 122,39 | 270,92 |
| 802 | 122,54 | 270,99 |
| 803 | 122,69 | 271,05 |
| 804 | 122,85 | 271,12 |
| 805 | 123,0  | 271,19 |
| 806 | 123,15 | 271,25 |
| 807 | 123,3  | 271,32 |
| 808 | 123,46 | 271,39 |
| 809 | 123,61 | 271,46 |
| 810 | 123,76 | 271,53 |
| 811 | 123,70 | 271,6  |
| 812 | 124,07 | 271,67 |
|     | -      |        |
| 813 | 124,22 | 271,74 |
| 814 | 124,38 | 271,81 |
| 815 | 124,53 | 271,88 |
| 816 | 124,68 | 271,95 |
| 817 | 124,83 | 272,02 |
| 818 | 124,99 | 272,09 |
| 819 | 125,14 | 272,15 |
| 820 | 125,29 | 272,21 |
| 821 | 125,45 | 272,31 |
| 822 | 125,6  | 272,43 |
| 823 | 125,75 | 272,55 |
| 824 | 125,91 | 272,67 |
| 825 | 126,06 | 272,79 |
| 826 | 126,21 | 272,91 |
| 827 | 126,36 | 273,03 |
| 828 | 126,52 | 273,14 |
| 829 | 126,67 | 273,28 |
| 830 | 126,82 | 273,42 |
| 831 | 126,98 | 273,57 |
| 832 | 127,13 | 273,73 |
| 833 | 127,28 | 273,92 |
| 834 | 127,44 | 274,1  |
| 835 | 127,59 | 274,29 |
| 836 | 127,74 | 274,48 |
| 837 | 127,89 | 274,67 |
| 838 | 128,05 | 274,86 |
| 839 | 128,2  | 275,03 |
| 840 | 128,35 | 275,19 |
| 841 | 128,51 | 275,33 |
| 842 | 128,66 | 275,46 |
| 843 | 128,81 | 275,57 |
|     |        |        |
| 844 | 128,96 | 275,67 |
| 845 | 129,12 | 275,74 |
| 846 | 129,27 | 275,8  |
| 847 | 129,42 | 275,87 |
| 848 | 129,58 | 275,91 |
| 849 | 129,73 | 275,95 |
| 850 | 129,88 | 275,99 |

| 851                  | 130,04 | 276,04 |
|----------------------|--------|--------|
| 852                  | 130,19 | 276,1  |
| 853                  | 130,34 | 276,16 |
| 854                  | 130,49 | 276,24 |
| 855                  | 130,65 | 276,32 |
| 856                  | 130,8  | 276,41 |
| 857                  | 130,95 | 276,5  |
| 858                  | 131,11 | 276,59 |
| 859                  | 131,26 | 276,69 |
| 860                  | 131,41 | 276,78 |
| 861                  | 131,57 | 276,88 |
| 862                  | 131,72 | 276,97 |
| 863                  | 131,87 | 277,07 |
| 864                  | 132,02 | 277,16 |
| 865                  | 132,18 | 277,26 |
| 866                  | 132,33 | 277,36 |
| 867                  | 132,48 | 277,46 |
| 868                  | 132,64 | 277,6  |
| 869                  | 132,79 | 277,76 |
| 870                  | 132,94 | 277,92 |
| 871                  | 133,1  | 278,07 |
| 872                  | 133,25 | 278,22 |
| 873                  | 133,4  | 278,37 |
| 874                  | 133,55 | 278,52 |
| 875                  | 133,71 | 278,67 |
| 876                  | 133,86 | 278,82 |
| 877                  | 134,01 | 278,96 |
| 878                  | 134,17 | 279,1  |
| 879                  | 134,32 | 279,24 |
| 880                  | 134,47 | 279,37 |
| 881                  | 134,63 | 279,51 |
| 882                  | 134,78 | 279,64 |
| 883                  | 134,93 | 279,78 |
| 884                  | 135,08 | 279,91 |
| 885                  | 135,24 | 280,04 |
| 886                  | 135,39 | 280,17 |
| 887                  | 135,54 | 280,3  |
| 888                  | 135,7  | 280,43 |
| 889                  | 135,85 | 280,56 |
| 890                  | 136,0  | 280,68 |
| 891                  | 136,16 | 280,8  |
| 892                  | 136,31 | 280,93 |
| 893                  | 136,46 | 281,05 |
| 894                  | 136,61 | 281,17 |
| 895                  | 136,77 | 281,29 |
| 896                  | 136,92 | 281,41 |
| 897                  | 137,07 | 281,52 |
| 898                  | 137,23 | 281,63 |
| 899                  | 137,38 | 281,74 |
| 900                  | 137,53 | 281,86 |
| 901                  | 137,68 | 281,97 |
| <i>&gt;</i> <b>1</b> | 107,00 |        |

| 902 | 137,84 | 282,08 |
|-----|--------|--------|
| 903 | 137,99 | 282,19 |
| 904 | 138,14 | 282,3  |
| 905 | 138,3  | 282,41 |
| 906 | 138,45 | 282,51 |
| 907 | 138,6  | 282,62 |
| 908 | 138,76 | 282,74 |
| 909 | 138,91 | 282,89 |
| 910 | 139,06 | 283,05 |
| 911 | 139,21 | 283,22 |
| 912 | 139,37 | 283,37 |
| 913 | 139,52 | 283,53 |
| 914 | 139,67 | 283,68 |
| 915 | 139,83 | 283,83 |
| 916 | 139,98 | 283,98 |
| 917 | 140,13 | 284,12 |
| 918 | 140,29 | 284,26 |
| 919 | 140,44 | 284,4  |
| 920 | 140,59 | 284,54 |
| 921 | 140,74 | 284,68 |
| 922 | 140,9  | 284,81 |
| 923 | 141,05 | 284,95 |
| 924 | 141,2  | 285,08 |
| 925 | 141,36 | 285,21 |
| 926 | 141,51 | 285,34 |
| 927 | 141,66 | 285,47 |
| 928 | 141,82 | 285,6  |
| 929 | 141,97 | 285,73 |
| 930 | 142,12 | 285,86 |
| 931 | 142,27 | 285,99 |
| 932 | 142,43 | 286,11 |
| 933 | 142,58 | 286,24 |
| 934 | 142,73 | 286,37 |
| 935 | 142,89 | 286,49 |
| 936 | 143,04 | 286,61 |
| 937 | 143,19 | 286,74 |
| 938 | 143,35 | 286,86 |
| 939 | 143,5  | 286,98 |
| 940 | 143,65 | 287,1  |
| 941 | 143,8  | 287,22 |
| 942 | 143,96 | 287,34 |
| 943 | 144,11 | 287,45 |
| 944 | 144,26 | 287,57 |
| 945 | 144,42 | 287,68 |
| 946 | 144,57 | 287,8  |
| 947 | 144,72 | 287,91 |
| 948 | 144,88 | 288,02 |
| 949 | 145,03 | 288,13 |
| 950 | 145,18 | 288,24 |
| 951 | 145,33 | 288,35 |
| 952 | 145,49 | 288,46 |
| 734 | 173,47 | 200,40 |

| 953  | 145,64 | 288,56                                |
|------|--------|---------------------------------------|
| 954  | 145,79 | 288,67                                |
| 955  | 145,95 | 288,78                                |
| 956  | 146,1  | 288,89                                |
| 957  | 146,25 | 289,0                                 |
| 958  | 146,41 | 289,11                                |
| 959  | 146,56 | 289,22                                |
| 960  | 146,71 | 289,33                                |
| 961  | 146,86 | 289,44                                |
| 962  | 147,02 | 289,55                                |
| 963  | 147,17 | 289,66                                |
| 964  | 147,32 | 289,77                                |
| 965  | 147,48 | 289,88                                |
| 966  | 147,63 | 289,99                                |
| 967  | 147,78 | 290,1                                 |
| 968  | 147,93 | 290,21                                |
| 969  | 148,09 | 290,31                                |
| 970  | 148,24 | 290,42                                |
| 970  | 148,39 | · · · · · · · · · · · · · · · · · · · |
|      | ,      | 290,52                                |
| 972  | 148,55 | 290,62                                |
| 973  | 148,7  | 290,71                                |
| 974  | 148,85 | 290,8                                 |
| 975  | 149,01 | 290,9                                 |
| 976  | 149,16 | 291,0                                 |
| 977  | 149,31 | 291,1                                 |
| 978  | 149,46 | 291,19                                |
| 979  | 149,62 | 291,28                                |
| 980  | 149,77 | 291,37                                |
| 981  | 149,92 | 291,45                                |
| 982  | 150,08 | 291,54                                |
| 983  | 150,23 | 291,66                                |
| 984  | 150,38 | 291,77                                |
| 985  | 150,54 | 291,89                                |
| 986  | 150,69 | 292,0                                 |
| 987  | 150,84 | 292,1                                 |
| 988  | 150,99 | 292,21                                |
| 989  | 151,15 | 292,31                                |
| 990  | 151,3  | 292,4                                 |
| 991  | 151,45 | 292,48                                |
| 992  | 151,61 | 292,56                                |
| 993  | 151,76 | 292,64                                |
| 994  | 151,91 | 292,71                                |
| 995  | 152,07 | 292,79                                |
| 996  | 152,22 | 292,88                                |
| 997  | 152,37 | 292,97                                |
| 998  | 152,52 | 293,05                                |
| 999  | 152,68 | 293,14                                |
| 1000 | 152,83 | 293,25                                |
| 1001 | 152,98 | 293,35                                |
| 1002 | 153,14 | 293,45                                |
| 1002 | 153,14 | 293,54                                |
| 1003 | 133,49 | 473,34                                |

| 1004 | 153,44 | 293,62 |
|------|--------|--------|
| 1005 | 153,6  | 293,7  |
| 1006 | 153,75 | 293,78 |
| 1007 | 153,9  | 293,86 |
| 1008 | 154,05 | 293,96 |
| 1009 | 154,21 | 294,07 |
| 1010 | 154,36 | 294,19 |
| 1011 | 154,51 | 294,29 |
| 1012 | 154,67 | 294,39 |
| 1013 | 154,82 | 294,49 |
| 1014 | 154,97 | 294,57 |
| 1015 | 155,13 | 294,65 |
| 1016 | 155,28 | 294,73 |
| 1017 | 155,43 | 294,82 |
| 1018 | 155,58 | 294,9  |
| 1019 | 155,74 | 294,98 |
| 1020 | 155,89 | 295,06 |
| 1020 | 156,04 | 295,14 |
| 1021 | 156,2  | 295,23 |
| 1022 | 156,35 | 295,33 |
| 1023 | 156,5  | 295,42 |
| 1025 | 156,65 | 295,51 |
| 1025 | 156,81 | 295,6  |
| 1020 |        | 295,68 |
|      | 156,96 |        |
| 1028 | 157,11 | 295,76 |
| 1029 | 157,27 | 295,85 |
|      | 157,42 | 295,93 |
| 1031 | 157,57 | 296,02 |
| 1032 | 157,73 | 296,1  |
| 1033 | 157,88 | 296,18 |
| 1034 | 158,03 | 296,27 |
| 1035 | 158,18 | 296,35 |
| 1036 | 158,34 | 296,43 |
| 1037 | 158,49 | 296,51 |
| 1038 | 158,64 | 296,58 |
| 1039 | 158,8  | 296,67 |
| 1040 | 158,95 | 296,77 |
| 1041 | 159,1  | 296,88 |
| 1042 | 159,26 | 296,99 |
| 1043 | 159,41 | 297,1  |
| 1044 | 159,56 | 297,22 |
| 1045 | 159,71 | 297,34 |
| 1046 | 159,87 | 297,44 |
| 1047 | 160,02 | 297,54 |
| 1048 | 160,17 | 297,63 |
| 1049 | 160,33 | 297,7  |
| 1050 | 160,48 | 297,78 |
| 1051 | 160,63 | 297,83 |
| 1052 | 160,79 | 297,89 |
| 1053 | 160,94 | 297,92 |
| 1054 | 161,09 | 297,96 |
|      | ·      |        |

| 1055 | 161,24 | 297,97           |
|------|--------|------------------|
| 1056 | 161,4  | 297,98           |
| 1057 | 161,55 | 298,0            |
| 1058 | 161,7  | 298,02           |
| 1059 | 161,86 | 298,04           |
| 1060 | 162,01 | 298,07           |
| 1061 | 162,16 | 298,1            |
| 1062 | 162,32 | 298,14           |
| 1063 | 162,47 | 298,17           |
| 1064 | 162,62 | 298,24           |
| 1065 | 162,77 | 298,37           |
| 1066 | 162,93 | 298,49           |
| 1067 | 163,08 | 298,61           |
| 1068 | 163,23 | 298,71           |
| 1069 | 163,39 | 298,81           |
| 1070 | 163,54 | 298,9            |
| 1071 | 163,69 | 298,99           |
| 1072 | 163,85 | 299,08           |
| 1073 | 164,0  | 299,16           |
| 1074 | 164,15 | 299,24           |
| 1075 | 164,3  | 299,32           |
| 1076 | 164,46 | 299,39           |
| 1077 | 164,61 | 299,46           |
| 1078 | 164,76 | 299,54           |
| 1079 | 164,92 | 299,61           |
| 1080 | 165,07 | 299,67           |
| 1081 | 165,22 | 299,74           |
| 1082 | 165,37 | 299,81           |
| 1083 | 165,53 | 299,87           |
| 1084 | 165,68 | 299,94           |
| 1085 | 165,83 | 300,0            |
| 1086 | 165,99 | 300,06           |
| 1087 | 166,14 | 300,12           |
| 1088 | 166,29 | 300,12           |
| 1089 | 166,45 | 300,18           |
| 1090 | 166,6  | 300,24           |
| 1090 | 166,75 | 300,35           |
| 1091 | 166,9  | 300,33           |
| 1092 | 167,06 | 300,46           |
| 1093 | 167,06 | 300,46           |
| 1094 | 167,21 |                  |
| 1093 |        | 300,56<br>300,61 |
| 1096 | 167,52 | ,                |
|      | 167,67 | 300,66           |
| 1098 | 167,82 | 300,71           |
| 1099 | 167,98 | 300,76           |
| 1100 | 168,13 | 300,8            |
| 1101 | 168,28 | 300,84           |
| 1102 | 168,43 | 300,88           |
| 1103 | 168,59 | 300,92           |
| 1104 | 168,74 | 300,96           |
| 1105 | 168,89 | 300,99           |

| 1106 | 169,05 | 301,03 |
|------|--------|--------|
| 1107 | 169,2  | 301,06 |
| 1108 | 169,35 | 301,09 |
| 1109 | 169,51 | 301,12 |
| 1110 | 169,66 | 301,14 |
| 1111 | 169,81 | 301,17 |
| 1112 | 169,96 | 301,19 |
| 1113 | 170,12 | 301,21 |
| 1114 | 170,27 | 301,23 |
| 1115 | 170,42 | 301,25 |
| 1116 | 170,58 | 301,27 |
| 1117 | 170,73 | 301,29 |
| 1118 | 170,88 | 301,3  |
| 1119 | 171,04 | 301,32 |
| 1120 | 171,19 | 301,33 |
| 1121 | 171,34 | 301,34 |
| 1121 | 171,49 | 301,35 |
|      | 171,49 |        |
| 1123 | 171,65 | 301,36 |
| 1124 | 171,8  | 301,37 |
| 1125 | 171,95 | 301,38 |
| 1126 | 172,11 | 301,39 |
| 1127 | 172,26 | 301,4  |
| 1128 | 172,41 | 301,41 |
| 1129 | 172,57 | 301,42 |
| 1130 | 172,72 | 301,43 |
| 1131 | 172,87 | 301,44 |
| 1132 | 173,02 | 301,44 |
| 1133 | 173,18 | 301,45 |
| 1134 | 173,33 | 301,46 |
| 1135 | 173,48 | 301,47 |
| 1136 | 173,64 | 301,47 |
| 1137 | 173,79 | 301,48 |
| 1138 | 173,94 | 301,49 |
| 1139 | 174,1  | 301,5  |
| 1140 | 174,25 | 301,5  |
| 1141 | 174,4  | 301,51 |
| 1142 | 174,55 | 301,52 |
| 1143 | 174,71 | 301,53 |
| 1144 | 174,86 | 301,54 |
| 1145 | 175,01 | 301,55 |
| 1146 | 175,17 | 301,56 |
| 1147 | 175,32 | 301,56 |
| 1148 | 175,47 | 301,57 |
| 1148 | 175,62 | 301,58 |
| 1150 | 175,78 | 301,58 |
|      |        | ,      |
| 1151 | 175,93 | 301,6  |
| 1152 | 176,08 | 301,61 |
| 1153 | 176,24 | 301,62 |
| 1154 | 176,39 | 301,63 |
| 1155 | 176,54 | 301,65 |
| 1156 | 176,7  | 301,66 |

| 1157 | 176,85 | 301,67 |
|------|--------|--------|
| 1158 | 177,0  | 301,68 |
| 1159 | 177,15 | 301,69 |
| 1160 | 177,31 | 301,7  |
| 1161 | 177,46 | 301,72 |
| 1162 | 177,61 | 301,73 |
| 1163 | 177,77 | 301,74 |
| 1164 | 177,92 | 301,76 |
| 1165 | 178,07 | 301,77 |
| 1166 | 178,23 | 301,78 |
| 1167 | 178,38 | 301,8  |
| 1168 | 178,53 | 301,81 |
| 1169 | 178,68 | 301,82 |
| 1170 | 178,84 | 301,84 |
| 1171 | 178,99 | 301,85 |
| 1172 | 179,14 | 301,87 |
| 1173 | 179,3  | 301,88 |
| 1174 | 179,45 | 301,9  |
| 1175 | 179,6  | 301,91 |
| 1176 | 179,76 | 301,93 |
| 1177 | 179,91 | 301,94 |
| 1178 | 180,06 | 301,96 |
| 1179 | 180,21 | 301,97 |
| 1180 | 180,37 | 301,99 |
| 1181 | 180,52 | 302,0  |
| 1182 | 180,67 | 302,02 |
| 1183 | 180,83 | 302,03 |
| 1184 | 180,98 | 302,05 |
| 1185 | 181,13 | 302,07 |
| 1186 | 181,29 | 302,08 |
| 1187 | 181,44 | 302,1  |
| 1188 | 181,59 | 302,11 |
| 1189 | 181,74 | 302,13 |
| 1190 | 181,9  | 302,15 |
| 1191 | 182,05 | 302,16 |
| 1192 | 182,2  | 302,18 |
| 1192 | 182,36 | 302,18 |
| 1193 | 182,51 | 302,19 |
| 1194 | 182,66 | 302,21 |
| 1196 | 182,82 | 302,23 |
| 1190 | 182,97 | 302,24 |
| 1197 | 183,12 | 302,20 |
| 1198 | 183,27 | 302,27 |
| 1200 |        | 302,31 |
| 1200 | 183,43 | 302,31 |
|      | 183,58 |        |
| 1202 | 183,73 | 302,34 |
| 1203 | 183,89 | 302,35 |
| 1204 | 184,04 | 302,37 |
| 1205 | 184,19 | 302,38 |
| 1206 | 184,34 | 302,4  |
| 1207 | 184,5  | 302,42 |

| 1208         | 184,65                                | 302,43 |
|--------------|---------------------------------------|--------|
| 1209         | 184,8                                 | 302,45 |
| 1210         | 184,96                                | 302,46 |
| 1211         | 185,11                                | 302,48 |
| 1212         | 185,26                                | 302,49 |
| 1213         | 185,42                                | 302,51 |
| 1214         | 185,57                                | 302,52 |
| 1215         | 185,72                                | 302,54 |
| 1216         | 185,87                                | 302,55 |
| 1217         | 186,03                                | 302,56 |
| 1218         | 186,18                                | 302,58 |
| 1219         | 186,33                                | 302,59 |
| 1220         | 186,49                                | 302,61 |
| 1221         | 186,64                                | 302,62 |
| 1222         | 186,79                                | 302,63 |
| 1223         | 186,95                                | 302,65 |
| 1224         | 187,1                                 | 302,66 |
| 1225         | 187,25                                | 302,67 |
| 1226         | 187,4                                 | 302,69 |
| 1227         | 187,56                                | 302,7  |
| 1228         | 187,71                                | 302,71 |
| 1229         | 187,86                                | 302,71 |
| 1230         | 188,02                                | 302,73 |
| 1230         | 188,17                                | 302,74 |
| 1231         |                                       | 302,76 |
| 1232         | 188,32<br>188,48                      | 302,76 |
| 1233         | 188,63                                | 302,77 |
| 1235         | 188,78                                | 302,79 |
| 1236         | · · · · · · · · · · · · · · · · · · · |        |
|              | 188,93                                | 302,81 |
| 1237<br>1238 | 189,09                                | 302,82 |
| 1238         | 189,24                                | 302,83 |
|              | 189,39                                | 302,84 |
| 1240         | 189,55                                | 302,85 |
| 1241         | 189,7                                 | 302,86 |
| 1242         | 189,85                                | 302,87 |
| 1243         | 190,01                                | 302,88 |
| 1244         | 190,16                                | 302,89 |
| 1245         | 190,31                                | 302,9  |
| 1246         | 190,46                                | 302,91 |
| 1247         | 190,62                                | 302,92 |
| 1248         | 190,77                                | 302,93 |
| 1249         | 190,92                                | 302,94 |
| 1250         | 191,08                                | 302,94 |
| 1251         | 191,23                                | 302,95 |
| 1252         | 191,38                                | 302,96 |
| 1253         | 191,54                                | 302,97 |
| 1254         | 191,69                                | 302,97 |
| 1255         | 191,84                                | 302,98 |
| 1256         | 191,99                                | 302,99 |
| 1257         | 192,15                                | 303,0  |
| 1258         | 192,3                                 | 303,0  |

| 1259 | 192,45 | 303,01 |
|------|--------|--------|
| 1260 | 192,61 | 303,01 |
| 1261 | 192,76 | 303,02 |
| 1262 | 192,91 | 303,02 |
| 1263 | 193,06 | 303,03 |
| 1264 | 193,22 | 303,03 |
| 1265 | 193,37 | 303,04 |
| 1266 | 193,52 | 303,04 |
| 1267 | 193,68 | 303,05 |
| 1268 | 193,83 | 303,05 |
| 1269 | 193,98 | 303,06 |
| 1270 | 194,14 | 303,06 |
| 1271 | 194,29 | 303,06 |
| 1272 | 194,44 | 303,07 |
| 1273 | 194,59 | 303,07 |
| 1274 | 194,75 | 303,07 |
| 1275 | 194,9  | 303,07 |
| 1276 | 195,05 | 303,08 |
| 1277 | 195,21 | 303,08 |
| 1278 | 195,36 | 303,08 |
| 1279 | 195,51 | 303,1  |

# Coefficienti parziali per i parametri geotecnici del terreno

| ======================================= |      |  |
|-----------------------------------------|------|--|
| =====                                   |      |  |
| Tangente angolo di resistenza al taglio | 1,25 |  |
| Coesione efficace                       | 1,25 |  |
| Coesione non drenata                    | 1,4  |  |
| Riduzione parametri geotecnici terreno  | No   |  |
|                                         |      |  |

\_\_\_\_\_

#### Stratigrafia

c: coesione; cu: coesione non drenata; Fi: Angolo di attrito; G: Peso Specifico; Gs: Peso Specifico Saturo; K: Modulo di Winkler

| Strat | c                 | cu                | Fi  | G       | Gs      | K    | Lito |  |
|-------|-------------------|-------------------|-----|---------|---------|------|------|--|
| O     | (kg/              | (kg/              | (°) | (Kg/    | (Kg/    | (Kg/ | logi |  |
|       | cm <sup>2</sup> ) | cm <sup>2</sup> ) |     | $m^3$ ) | $m^3$ ) | cm³) | a    |  |
| 1     | 0,8               |                   | 35  | 170     | 210     | 0,00 |      |  |
|       |                   |                   |     | 0,00    | 0,00    |      |      |  |

# Risultati analisi pendio [NTC 2018: [A2+M2+R2]]

| =====                      |          |  |
|----------------------------|----------|--|
| Fs minimo individuato      | 1,3      |  |
| Ascissa centro superficie  | 125,7 m  |  |
| Ordinata centro superficie | 310,83 m |  |
| Raggio superficie          | 51,39 m  |  |
|                            |          |  |

\_\_\_\_

B: Larghezza del concio; Alfa: Angolo di inclinazione della base del concio; Li: Lunghezza della base del concio; Wi: Peso del concio; Ui: Forze derivanti dalle pressioni neutre; Ni: forze agenti normalmente alla direzione di scivolamento; Ti: forze agenti parallelamente alla superficie di scivolamento; Fi: Angolo di attrito; c: coesione.

(ID=14) xc = 125,70 yc = 310,833 Rc = 51,394 Fs=1,302

| Nr. B   | (0)       | Li Wi<br>m (Kg) | Kh•Wi<br>(Kg) | Kv•Wi<br>(Kg) | c<br>(kg/cm²) | Fi<br>(°) | Ui N'i<br>(Kg) (Kg) | Ti<br>(Kg) |
|---------|-----------|-----------------|---------------|---------------|---------------|-----------|---------------------|------------|
| 1 0,1   | <br>-15,9 | 0,11 8,89       | 0,89          | 0,44          | 0,8           | 35,0      | 0,0 9,2             | -1,6       |
| 2 0,15  | -15,7     | 0,16 47,32      | 4,73          | 2,37          | 0,8           | 35,0      | 0,0 49,1            | -8,3       |
| 3 0,15  | -15,6     | 0,16 90,6       | 9,06          | 4,53          | 0,8           | 35,0      | 0,0 94,1            | -15,6      |
| 4 0,15  | -15,4     | 0,16 135,28     | 13,53         | 6,76          | 0,8           | 35,0      | 0,0 140,5           | -22,9      |
| 5 0,15  | -15,2     | 0,16 179,29     | 17,93         | 8,96          | 0,8           | 35,0      | 0,0 186,4           | -29,8      |
| 6 0,15  | -15,0     | 0,16 222,72     | 22,27         | 11,14         | 0,8           | 35,0      | 0,0 231,6           | -36,2      |
| 7 0,15  | -14,9     | 0,16 266,15     | 26,61         | 13,31         | 0,8           | 35,0      | 0,0 276,9           | -42,5      |
| 8 0,15  | -14,7     | 0,16 308,7      | 30,87         | 15,44         | 0,8           | 35,0      | 0,0 321,4           | -48,4      |
| 9 0,15  | -14,5     | 0,16 350,69     | 35,07         | 17,53         | 0,8           | 35,0      | 0,0 365,3           | -53,9      |
| 1063,36 | 32,6      | 75,242668172,0  | 0266817,21    | 33408,6       | 6 0,8         | 35,0      | 0,02215541.         | 0166341    |

### **VERIFICHE DI STABILITA' DI PENDIO SEZ. b-b'**

Le condizioni di stabilità del versante in oggetto sono state analizzate con riferimento al modello geologico-tecnico della Figura sottostante, utilizzando il software SLOPE della GEOSTRU e facendo riferimento a quanto prescritto dalle NTC 2018.

Il versante in esame è stato considerato costituito da un unico strato di terreno caratterizzato dai parametri fisico-meccanici riportati in Tabella 1.

| Strato | Peso dell'unità di<br>volume di terreno<br>γ [kN/m³] | Peso dell'unità di<br>volume di terreno<br>saturo<br>γ <sub>sat</sub> [kN/m³] | Coesione<br>c [Kg/cm2] | Angolo di resistenza a<br>taglio<br>φ [°] |
|--------|------------------------------------------------------|-------------------------------------------------------------------------------|------------------------|-------------------------------------------|
| 1      | 17                                                   | 21                                                                            | 0,8                    | 35                                        |

Tabella 1 – Sintesi dei parametri geotecnici di calcolo utilizzati nelle analisi di stabilità.

Conformemente alla normativa vigente, il calcolo del fattore di sicurezza è stato eseguito analizzando un numero sufficiente di superfici circolari, cinematicamente ammissibili, generate automaticamente dal software a partire da una maglia di centri definita dall'utente.

Di seguito si riportano i risultati ottenuti nell'analisi delle condizioni di equilibrio limite del versante in esame per la configurazione di calcolo considerata e riportata nella Figura sottostante.

In particolare si evidenzia l'assenza di potenziali superfici di scorrimento caratterizzate da un fattore di sicurezza minore o uguale ad 1 (instabili) e localizza la superficie di scorrimento con fattore di sicurezza minimo (Fs=2.6).

Si precisa che le opere previste in progetto, localizzate in corrispondenza della base del versante, non pregiudicano le condizioni di stabilità del versante stesso.

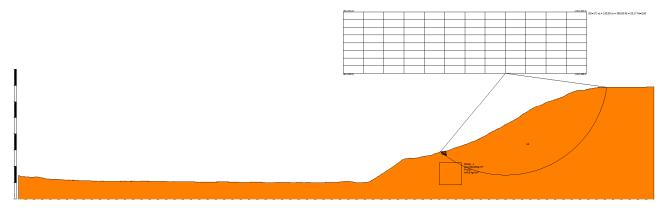



Figura SEZ. b-b" – Superficie di rottura a fattore di sicurezza minimo (Fs=2.6).

# SEZ. b-b'

#### Analisi di stabilità dei pendii con: FELLENIUS (1936)

| Calcolo eseguito secondo                          | [A2+M1+R2]         |  |
|---------------------------------------------------|--------------------|--|
| Numero di strati                                  | 1,0                |  |
| Numero dei conci                                  | 10,0               |  |
| Grado di sicurezza ritenuto accettabile           | 1,1                |  |
| Coefficiente parziale resistenza                  | 1,0                |  |
| Parametri geotecnici da usare. Angolo di attrito: | Picco              |  |
| Analisi                                           | Condizione drenata |  |
| Superficie di forma circolare                     |                    |  |
|                                                   |                    |  |

#### Maglia dei Centri

| Ascissa vertice sinistro inferiore xi  | 80,0 m  |
|----------------------------------------|---------|
| Ordinata vertice sinistro inferiore yi | 285,0 m |
| Ascissa vertice destro superiore xs    | 140,0 m |
| Ordinata vertice destro superiore ys   | 300,0 m |
| Passo di ricerca                       | 10,0    |
| Numero di celle lungo x                | 12,0    |
| Numero di celle lungo y                | 8,0     |

Vertici profilo

| N  | X            | у      |
|----|--------------|--------|
|    | m            | m      |
| 1  | 0,0          | 259,78 |
| 2  | 0,15         | 259,71 |
| 3  | 0,31         | 259,64 |
| 4  | 0,46         | 259,57 |
| 5  | 0,61         | 259,52 |
| 6  | 0,76         | 259,49 |
| 7  | 0,92         | 259,47 |
| 8  | 1,07         | 259,46 |
| 9  | 1,22         | 259,46 |
| 10 | 1,38         | 259,44 |
| 11 | 1,53         | 259,44 |
| 12 | 1,68         | 259,43 |
| 13 | 1,84         | 259,41 |
| 14 | 1,99         | 259,4  |
| 15 | 2,14         | 259,39 |
| 16 | 2,29<br>2,45 | 259,38 |
| 17 | 2,45         | 259,37 |

| 18 | 2,6   | 259,36 |
|----|-------|--------|
| 19 | 2,75  | 259,35 |
| 20 | 2,91  | 259,34 |
| 21 | 3,06  | 259,34 |
| 22 | 3,21  | 259,34 |
| 23 | 3,37  | 259,34 |
| 24 | 3,52  | 259,35 |
| 25 | 3,67  | 259,35 |
| 26 | 3,82  | 259,36 |
| 27 | 3,98  | 259,37 |
| 28 | 4,13  | 259,37 |
| 29 | 4,28  | 259,38 |
| 30 | 4,44  | 259,39 |
| 31 | 4,59  | 259,38 |
| 32 | 4,74  | 259,37 |
| 33 | 4,89  | 259,36 |
| 34 | 5,05  | 259,33 |
| 35 | 5,03  | 259,3  |
| 36 |       | 259,27 |
| 37 | 5,35  |        |
|    | 5,51  | 259,25 |
| 38 | 5,66  | 259,21 |
| 39 | 5,81  | 259,18 |
| 40 | 5,97  | 259,16 |
| 41 | 6,12  | 259,11 |
| 42 | 6,27  | 259,07 |
| 43 | 6,42  | 259,03 |
| 44 | 6,58  | 258,99 |
| 45 | 6,73  | 258,95 |
| 46 | 6,88  | 258,93 |
| 47 | 7,04  | 258,91 |
| 48 | 7,19  | 258,9  |
| 49 | 7,34  | 258,89 |
| 50 | 7,49  | 258,88 |
| 51 | 7,65  | 258,86 |
| 52 | 7,8   | 258,84 |
| 53 | 7,95  | 258,83 |
| 54 | 8,11  | 258,81 |
| 55 | 8,26  | 258,79 |
| 56 | 8,41  | 258,78 |
| 57 | 8,57  | 258,78 |
| 58 | 8,72  | 258,78 |
| 59 | 8,87  | 258,79 |
| 60 | 9,02  | 258,79 |
| 61 | 9,18  | 258,79 |
| 62 | 9,33  | 258,79 |
| 63 | 9,48  | 258,79 |
| 64 | 9,64  | 258,78 |
| 65 | 9,79  | 258,79 |
| 66 | 9,94  | 258,77 |
| 67 | 10,1  | 258,76 |
| 68 | 10,25 | 258,75 |
| 00 | 10,43 | 430,13 |

| 69  | 10,4           | 258,74          |
|-----|----------------|-----------------|
| 70  | 10,55          | 258,73          |
| 71  | 10,71          | 258,72          |
| 72  | 10,86          | 258,71          |
| 73  | 11,01          | 258,69          |
| 74  | 11,17          | 258,68          |
| 75  | 11,32          | 258,66          |
| 76  | 11,47          | 258,65          |
| 77  | 11,62          | 258,65          |
| 78  | 11,78          | 258,65          |
| 79  | 11,93          | 258,65          |
| 80  | 12,08          | 258,65          |
| 81  | 12,24          | 258,64          |
| 82  | 12,39          | 258,64          |
| 83  | 12,54          | 258,62          |
| 84  | 12,7           | 258,61          |
| 85  | 12,85          | 258,6           |
| 86  | 13,0           | 258,59          |
| 87  | - '            |                 |
| 88  | 13,15<br>13,31 | 258,59<br>258,6 |
|     | ·              |                 |
| 89  | 13,46          | 258,59          |
| 90  | 13,61          | 258,6           |
| 91  | 13,77          | 258,59          |
| 92  | 13,92          | 258,58          |
| 93  | 14,07          | 258,57          |
| 94  | 14,22          | 258,56          |
| 95  | 14,38          | 258,55          |
| 96  | 14,53          | 258,53          |
| 97  | 14,68          | 258,52          |
| 98  | 14,84          | 258,51          |
| 99  | 14,99          | 258,49          |
| 100 | 15,14          | 258,48          |
| 101 | 15,3           | 258,48          |
| 102 | 15,45          | 258,47          |
| 103 | 15,6           | 258,47          |
| 104 | 15,75          | 258,47          |
| 105 | 15,91          | 258,47          |
| 106 | 16,06          | 258,47          |
| 107 | 16,21          | 258,47          |
| 108 | 16,37          | 258,46          |
| 109 | 16,52          | 258,46          |
| 110 | 16,67          | 258,46          |
| 111 | 16,83          | 258,46          |
| 112 | 16,98          | 258,45          |
| 113 | 17,13          | 258,45          |
| 114 | 17,28          | 258,45          |
| 115 | 17,44          | 258,44          |
| 116 | 17,59          | 258,44          |
| 117 | 17,74          | 258,43          |
| 118 | 17,9           | 258,42          |
| 119 | 18,05          | 258,42          |
| 117 | 10,03          | 230,72          |

| 120 | 18,2  | 258,41 |
|-----|-------|--------|
| 121 | 18,35 | 258,4  |
| 122 | 18,51 | 258,39 |
| 123 | 18,66 | 258,38 |
| 124 | 18,81 | 258,38 |
| 125 | 18,97 | 258,37 |
| 126 | 19,12 | 258,36 |
| 127 | 19,27 | 258,35 |
| 128 | 19,43 | 258,34 |
| 129 | 19,58 | 258,33 |
| 130 | 19,73 | 258,33 |
| 131 | 19,88 | 258,34 |
| 132 | 20,04 | 258,35 |
| 133 | 20,19 | 258,36 |
| 134 | 20,34 | 258,36 |
| 135 | 20,5  | 258,36 |
| 136 | 20,65 | 258,36 |
| 137 | 20,8  | 258,35 |
| 138 |       |        |
| 138 | 20,95 | 258,34 |
|     | 21,11 | 258,33 |
| 140 | 21,26 | 258,31 |
| 141 | 21,41 | 258,3  |
| 142 | 21,57 | 258,3  |
| 143 | 21,72 | 258,3  |
| 144 | 21,87 | 258,3  |
| 145 | 22,03 | 258,3  |
| 146 | 22,18 | 258,3  |
| 147 | 22,33 | 258,3  |
| 148 | 22,48 | 258,31 |
| 149 | 22,64 | 258,32 |
| 150 | 22,79 | 258,32 |
| 151 | 22,94 | 258,33 |
| 152 | 23,1  | 258,32 |
| 153 | 23,25 | 258,32 |
| 154 | 23,4  | 258,31 |
| 155 | 23,56 | 258,31 |
| 156 | 23,71 | 258,3  |
| 157 | 23,86 | 258,3  |
| 158 | 24,01 | 258,31 |
| 159 | 24,17 | 258,31 |
| 160 | 24,32 | 258,32 |
| 161 | 24,47 | 258,32 |
| 162 | 24,63 | 258,33 |
| 163 | 24,78 | 258,33 |
| 164 | 24,93 | 258,34 |
| 165 | 25,08 | 258,34 |
| 166 | 25,24 | 258,34 |
| 167 | 25,39 | 258,35 |
| 168 | 25,54 | 258,35 |
| 169 | 25,7  | 258,36 |
| 170 | 25,85 | 258,37 |
| 1/0 | 45,65 | 230,37 |

| 171 | 26,0  | 258,36 |
|-----|-------|--------|
| 172 | 26,16 | 258,36 |
| 173 | 26,31 | 258,36 |
| 174 | 26,46 | 258,34 |
| 175 | 26,61 | 258,33 |
| 176 | 26,77 | 258,32 |
| 177 | 26,92 | 258,32 |
| 178 | 27,07 | 258,32 |
| 179 | 27,23 | 258,32 |
| 180 | 27,38 | 258,33 |
| 181 | 27,53 | 258,33 |
| 182 | 27,68 | 258,34 |
| 183 | 27,84 | 258,34 |
| 184 | 27,99 | 258,34 |
| 185 | 28,14 | 258,35 |
| 186 | 28,3  | 258,35 |
| 187 | 28,45 | 258,33 |
| 188 |       |        |
|     | 28,6  | 258,35 |
| 189 | 28,76 | 258,33 |
| 190 | 28,91 | 258,32 |
| 191 | 29,06 | 258,31 |
| 192 | 29,21 | 258,3  |
| 193 | 29,37 | 258,29 |
| 194 | 29,52 | 258,29 |
| 195 | 29,67 | 258,3  |
| 196 | 29,83 | 258,31 |
| 197 | 29,98 | 258,33 |
| 198 | 30,13 | 258,34 |
| 199 | 30,29 | 258,35 |
| 200 | 30,44 | 258,37 |
| 201 | 30,59 | 258,38 |
| 202 | 30,74 | 258,37 |
| 203 | 30,9  | 258,38 |
| 204 | 31,05 | 258,38 |
| 205 | 31,2  | 258,37 |
| 206 | 31,36 | 258,36 |
| 207 | 31,51 | 258,36 |
| 208 | 31,66 | 258,35 |
| 209 | 31,81 | 258,33 |
| 210 | 31,97 | 258,34 |
| 211 | 32,12 | 258,33 |
| 212 | 32,27 | 258,32 |
| 213 | 32,43 | 258,31 |
| 214 | 32,58 | 258,3  |
| 215 | 32,73 | 258,28 |
| 216 | 32,73 | 258,27 |
|     | -     |        |
| 217 | 33,04 | 258,27 |
| 218 | 33,19 | 258,27 |
| 219 | 33,34 | 258,28 |
| 220 | 33,5  | 258,28 |
| 221 | 33,65 | 258,29 |

| 222 | 33,8  | 258,29 |
|-----|-------|--------|
| 223 | 33,96 | 258,29 |
| 224 | 34,11 | 258,3  |
| 225 | 34,26 | 258,3  |
| 226 | 34,41 | 258,3  |
| 227 | 34,57 | 258,31 |
| 228 | 34,72 | 258,32 |
| 229 | 34,87 | 258,31 |
| 230 | 35,03 | 258,32 |
| 230 |       | 258,32 |
|     | 35,18 |        |
| 232 | 35,33 | 258,32 |
| 233 | 35,49 | 258,32 |
| 234 | 35,64 | 258,33 |
| 235 | 35,79 | 258,32 |
| 236 | 35,94 | 258,31 |
| 237 | 36,1  | 258,31 |
| 238 | 36,25 | 258,3  |
| 239 | 36,4  | 258,28 |
| 240 | 36,56 | 258,26 |
| 241 | 36,71 | 258,24 |
| 242 | 36,86 | 258,22 |
| 243 | 37,02 | 258,21 |
| 244 | 37,17 | 258,2  |
| 245 | 37,32 | 258,21 |
| 246 | 37,47 | 258,22 |
| 247 | 37,63 | 258,23 |
| 248 | 37,78 | 258,24 |
| 249 | 37,93 | 258,25 |
| 250 | 38,09 | 258,25 |
| 251 | 38,24 | 258,26 |
| 252 | 38,39 | 258,25 |
| 253 | 38,54 | 258,24 |
| 254 | 38,7  | 258,24 |
| 255 | 38,85 |        |
|     | · ·   | 258,23 |
| 256 | 39,0  | 258,21 |
| 257 | 39,16 | 258,2  |
| 258 | 39,31 | 258,19 |
| 259 | 39,46 | 258,19 |
| 260 | 39,62 | 258,19 |
| 261 | 39,77 | 258,19 |
| 262 | 39,92 | 258,2  |
| 263 | 40,07 | 258,2  |
| 264 | 40,23 | 258,21 |
| 265 | 40,38 | 258,21 |
| 266 | 40,53 | 258,22 |
| 267 | 40,69 | 258,22 |
| 268 | 40,84 | 258,22 |
| 269 | 40,99 | 258,22 |
| 270 | 41,14 | 258,21 |
| 271 | 41,3  | 258,21 |
| 272 | 41,45 | 258,21 |
|     | ,     | ,      |

| 273 | 41,6  | 258,21 |
|-----|-------|--------|
| 274 | 41,76 | 258,22 |
| 275 | 41,91 | 258,23 |
| 276 | 42,06 | 258,22 |
| 277 | 42,22 | 258,23 |
| 278 | 42,37 | 258,23 |
| 279 | 42,52 | 258,23 |
| 280 | 42,67 | 258,22 |
| 281 | 42,83 | 258,22 |
| 282 | 42,98 | 258,22 |
| 283 | 43,13 | 258,21 |
| 284 | 43,29 | 258,2  |
| 285 | 43,44 | 258,18 |
| 286 | 43,59 | 258,16 |
| 287 | 43,75 | 258,15 |
| 288 | 43,9  | 258,14 |
| 289 | 44,05 | 258,13 |
| 290 | 44,03 | 258,13 |
| 290 | ,     |        |
|     | 44,36 | 258,09 |
| 292 | 44,51 | 258,08 |
| 293 | 44,66 | 258,08 |
| 294 | 44,82 | 258,08 |
| 295 | 44,97 | 258,09 |
| 296 | 45,12 | 258,11 |
| 297 | 45,27 | 258,13 |
| 298 | 45,43 | 258,14 |
| 299 | 45,58 | 258,14 |
| 300 | 45,73 | 258,15 |
| 301 | 45,89 | 258,14 |
| 302 | 46,04 | 258,14 |
| 303 | 46,19 | 258,13 |
| 304 | 46,35 | 258,12 |
| 305 | 46,5  | 258,12 |
| 306 | 46,65 | 258,12 |
| 307 | 46,8  | 258,12 |
| 308 | 46,96 | 258,13 |
| 309 | 47,11 | 258,14 |
| 310 | 47,26 | 258,15 |
| 311 | 47,42 | 258,15 |
| 312 | 47,57 | 258,15 |
| 313 | 47,72 | 258,16 |
| 314 | 47,87 | 258,16 |
| 315 | 48,03 | 258,16 |
| 316 | 48,18 | 258,15 |
| 317 | 48,33 | 258,15 |
| 318 | 48,49 | 258,15 |
| 319 | 48,64 | 258,16 |
| 320 | 48,79 | 258,17 |
| 321 | 48,95 | 258,17 |
| 322 | 49,1  | 258,17 |
| 323 | 49,25 | 258,18 |
| 343 | 47,43 | 430,10 |

| 324 | 49,4  | 258,18 |
|-----|-------|--------|
| 325 | 49,56 | 258,18 |
| 326 | 49,71 | 258,18 |
| 327 | 49,86 | 258,19 |
| 328 | 50,02 | 258,19 |
| 329 | 50,17 | 258,19 |
| 330 | 50,32 | 258,2  |
| 331 | 50,48 | 258,2  |
| 332 | 50,63 | 258,2  |
| 333 | 50,78 | 258,2  |
| 334 | 50,93 | 258,2  |
| 335 | 51,09 | 258,19 |
| 336 | 51,24 | 258,19 |
| 337 | 51,39 | 258,19 |
| 338 | 51,55 | 258,18 |
| 339 | 51,7  | 258,17 |
| 340 | 51,85 | 258,17 |
| 340 | 51,05 |        |
|     | 52,0  | 258,16 |
| 342 | 52,16 | 258,15 |
| 343 | 52,31 | 258,15 |
| 344 | 52,46 | 258,14 |
| 345 | 52,62 | 258,14 |
| 346 | 52,77 | 258,13 |
| 347 | 52,92 | 258,13 |
| 348 | 53,08 | 258,13 |
| 349 | 53,23 | 258,13 |
| 350 | 53,38 | 258,12 |
| 351 | 53,53 | 258,12 |
| 352 | 53,69 | 258,13 |
| 353 | 53,84 | 258,12 |
| 354 | 53,99 | 258,12 |
| 355 | 54,15 | 258,11 |
| 356 | 54,3  | 258,1  |
| 357 | 54,45 | 258,08 |
| 358 | 54,6  | 258,07 |
| 359 | 54,76 | 258,05 |
| 360 | 54,91 | 258,04 |
| 361 | 55,06 | 258,03 |
| 362 | 55,22 | 258,02 |
| 363 | 55,37 | 258,02 |
| 364 | 55,52 | 258,01 |
| 365 | 55,68 | 258,01 |
| 366 | 55,83 | 258,01 |
| 367 | 55,98 | 258,02 |
|     | ·     | 258,02 |
| 368 | 56,13 | /      |
| 369 | 56,29 | 258,03 |
| 370 | 56,44 | 258,04 |
| 371 | 56,59 | 258,06 |
| 372 | 56,75 | 258,08 |
| 373 | 56,9  | 258,09 |
| 374 | 57,05 | 258,12 |

| 375 | 57,21          | 258,12          |
|-----|----------------|-----------------|
| 376 | 57,36          | 258,13          |
| 377 | 57,51          | 258,14          |
| 378 | 57,66          | 258,15          |
| 379 | 57,82          | 258,14          |
| 380 | 57,97          | 258,15          |
| 381 | 58,12          | 258,15          |
| 382 | 58,28          | 258,13          |
| 383 | 58,43          | 258,12          |
| 384 | 58,58          | 258,1           |
| 385 | 58,73          | 258,09          |
| 386 | 58,89          | 258,09          |
| 387 | 59,04          | 258,09          |
| 388 | 59,19          | 258,1           |
| 389 | 59,35          | 258,1           |
| 390 | 59,5           | 258,1           |
| 391 | 59,65          | 258,1           |
| 392 | 59,81          | 258,09          |
| 393 | 59,96          | 258,07          |
| 394 | 60,11          | 258,06          |
| 395 | 60,26          | 258,05          |
| 396 | 60,42          | 258,03          |
| 397 | 60,57          | 258,03          |
| 398 | 60,72          | 258,0           |
| 399 | 60,88          | 257,99          |
| 400 |                | 257,99          |
| 400 | 61,03<br>61,18 | -               |
| 401 | 61,34          | 257,99<br>258,0 |
|     |                |                 |
| 403 | 61,49          | 258,0<br>258,0  |
|     | 61,64          |                 |
| 405 | 61,79          | 258,0           |
| 406 | 61,95          | 257,99          |
| 407 | 62,1           | 257,99          |
| 408 | 62,25          | 257,98          |
| 409 | 62,41          | 257,96          |
| 410 | 62,56          | 257,96          |
| 411 | 62,71          | 257,97          |
| 412 | 62,86          | 257,98          |
| 413 | 63,02          | 257,99          |
| 414 | 63,17          | 258,0           |
| 415 | 63,32          | 258,01          |
| 416 | 63,48          | 258,02          |
| 417 | 63,63          | 258,02          |
| 418 | 63,78          | 258,01          |
| 419 | 63,94          | 258,02          |
| 420 | 64,09          | 258,03          |
| 421 | 64,24          | 258,03          |
| 422 | 64,39          | 258,03          |
| 423 | 64,55          | 258,04          |
| 424 | 64,7           | 258,04          |
| 425 | 64,85          | 258,04          |

| 426 | 65,01          | 258,04                                |
|-----|----------------|---------------------------------------|
| 427 | 65,16          | 258,04                                |
| 428 | 65,31          | 258,04                                |
| 429 | 65,46          | 258,04                                |
| 430 | 65,62          | 258,04                                |
| 431 | 65,77          | 258,05                                |
| 432 | 65,92          | 258,06                                |
| 433 | 66,08          | 258,05                                |
| 434 | 66,23          | 258,04                                |
| 435 | 66,38          | 258,05                                |
| 436 | 66,54          | 258,02                                |
| 437 | 66,69          | 258,01                                |
| 438 | 66,84          | 258,0                                 |
| 439 | 66,99          | 257,99                                |
| 440 | 67,15          | 257,98                                |
| 441 | 67,3           | 257,98                                |
| 442 | 67,45          | 257,98                                |
| 443 | 67,61          | 257,98                                |
| 444 | 67,76          | 257,99                                |
| 445 | 67,91          | 257,99                                |
| 446 | 68,07          | 257,99                                |
| 447 | 68,22          | 258,0                                 |
| 448 | 68,37          | 258,0                                 |
| 449 | 68,52          | 258,0                                 |
| 450 | 68,68          | 258,01                                |
| 451 | 68,83          | 258,02                                |
| 452 | 68,98          | 258,03                                |
| 453 | 69,14          | 258,03                                |
| 454 | 69,29          | 258,04                                |
| 455 | 69,44          | 258,04                                |
| 456 | 69,59          | 258,03                                |
| 457 | 69,75          | 258,03                                |
| 458 | 69,9           | 258,02                                |
| 459 | 70,05          | 258,0                                 |
| 460 | 70,03          | 258,0                                 |
| 461 | 70,36          | 257,99                                |
| 462 | 70,51          | 257,99                                |
| 463 | 70,67          | 258,0                                 |
| 464 | 70,82          | 258,0                                 |
| 464 | 70,82          | 258,01                                |
| 465 | 71,12          | 258,01                                |
| 467 |                | 258,02                                |
| 468 | 71,28<br>71,43 | 258,02                                |
| 468 |                | · · · · · · · · · · · · · · · · · · · |
|     | 71,58          | 258,02                                |
| 470 | 71,74          | 258,03                                |
| 471 | 71,89          | 258,01                                |
| 472 | 72,04          | 257,99                                |
| 473 | 72,19          | 257,98                                |
| 474 | 72,35          | 257,96                                |
| 475 | 72,5           | 257,96                                |
| 476 | 72,65          | 257,95                                |

| 477   | 72,81          | 257,95 |
|-------|----------------|--------|
| 478   | 72,96          | 257,95 |
| 479   | 73,11          | 257,95 |
| 480   | 73,27          | 257,94 |
| 481   | 73,42          | 257,94 |
| 482   | 73,57          | 257,95 |
| 483   | 73,72          | 257,95 |
| 484   | 73,88          | 257,96 |
| 485   | 74,03          | 257,96 |
| 486   | 74,18          | 257,97 |
| 487   | 74,34          | 257,98 |
| 488   | 74,49          | 257,98 |
| 489   | 74,64          | 257,98 |
| 490   | 74,8           | 257,98 |
| 491   | 74,95          | 257,98 |
| 492   | 75,1           | 257,98 |
| 492   | 75,25          | 257,98 |
| 493   | -              | 1      |
| 494   | 75,41<br>75,56 | 257,98 |
| 495   | 75,71          | 257,99 |
|       |                | 258,0  |
| 497   | 75,87          | 258,01 |
| 498   | 76,02          | 258,01 |
| 499   | 76,17          | 258,03 |
| 500   | 76,32          | 258,03 |
| 501   | 76,48          | 258,03 |
| 502   | 76,63          | 258,04 |
| 503   | 76,78          | 258,04 |
| 504   | 76,94          | 258,03 |
| 505   | 77,09          | 258,03 |
| 506   | 77,24          | 258,02 |
| 507   | 77,4           | 258,01 |
| 508   | 77,55          | 258,01 |
| 509   | 77,7           | 258,01 |
| 510   | 77,85          | 258,01 |
| 511   | 78,01          | 258,02 |
| 512   | 78,16          | 258,02 |
| 513   | 78,31          | 258,03 |
| 514   | 78,47          | 258,05 |
| 515   | 78,62          | 258,07 |
| 516   | 78,77          | 258,09 |
| 517   | 78,92          | 258,12 |
| 518   | 79,08          | 258,14 |
| 519   | 79,23          | 258,17 |
| 520   | 79,38          | 258,19 |
| 521   | 79,54          | 258,21 |
| 522   | 79,69          | 258,23 |
| 523   | 79,84          | 258,24 |
| 524   | 80,0           | 258,25 |
| 525   | 80,15          | 258,26 |
| 526   | 80,3           | 258,27 |
| 527   | 80,45          | 258,27 |
| ~ - · |                |        |

| 528 | 80,61 | 258,28 |
|-----|-------|--------|
| 529 | 80,76 | 258,28 |
| 530 | 80,91 | 258,28 |
| 531 | 81,07 | 258,28 |
| 532 | 81,22 | 258,28 |
| 533 | 81,37 | 258,28 |
| 534 | 81,53 | 258,27 |
| 535 | 81,68 | 258,26 |
| 536 | 81,83 | 258,24 |
| 537 | 81,98 | 258,23 |
| 538 | 82,14 | 258,21 |
| 539 | 82,29 | 258,19 |
| 540 | 82,44 | 258,16 |
| 541 | 82,6  | 258,13 |
| 542 | 82,75 | 258,1  |
| 543 | 82,9  | 258,07 |
| 544 | 83,05 | 258,03 |
| 545 | 83,21 | 257,98 |
| 546 | 83,36 | 257,95 |
| 547 | 83,51 | 257,93 |
| 548 | 83,67 | 257,92 |
| 549 | 83,82 | 257,92 |
| 550 | 83,97 | 257,93 |
| 551 | 84,13 | 257,94 |
| 552 | 84,28 | 257,95 |
| 553 | 84,43 | 257,97 |
| 554 | 84,58 | 257,98 |
| 555 | 84,74 | 257,99 |
| 556 | 84,89 | 258,01 |
| 557 | 85,04 | 258,02 |
| 558 | 85,2  | 258,02 |
| 559 | 85,35 | 258,03 |
| 560 | 85,5  | 258,04 |
| 561 | 85,65 | 258,04 |
| 562 | 85,81 | 258,06 |
| 563 | 85,96 | 258,08 |
| 564 | 86,11 | 258,11 |
| 565 | 86,27 | 258,15 |
| 566 | 86,42 | 258,19 |
| 567 | 86,57 | 258,24 |
| 568 | 86,73 | 258,33 |
| 569 | 86,88 | 258,43 |
| 570 | 87,03 | 258,52 |
| 571 | 87,18 | 258,61 |
| 572 | 87,34 | 258,71 |
| 573 | 87,49 | 258,8  |
| 574 | 87,64 | 258,8  |
| 575 | 87,8  | 259,0  |
| 576 | 87,95 | 259,09 |
| 577 | 88,1  | 259,19 |
| 578 | 88,26 | 259,19 |
| 3/8 | 00,40 | 239,28 |

| 579 | 88,41          | 259,38                                |
|-----|----------------|---------------------------------------|
| 580 | 88,56          | 259,48                                |
| 581 | 88,71          | 259,57                                |
| 582 | 88,87          | 259,67                                |
| 583 | 89,02          | 259,77                                |
| 584 | 89,17          | 259,87                                |
| 585 | 89,33          | 259,96                                |
| 586 | 89,48          | 260,06                                |
| 587 | 89,63          | 260,16                                |
| 588 | 89,78          | 260,26                                |
| 589 | 89,94          | 260,36                                |
| 590 | 90,09          | 260,46                                |
| 591 | 90,24          | 260,55                                |
| 592 | 90,4           | 260,65                                |
| 593 | 90,55          | 260,75                                |
| 594 | 90,7           | 260,85                                |
| 595 | 90,86          | 260,95                                |
| 596 | 91,01          | 261,05                                |
| 597 | 91,16          | 261,16                                |
| 598 | 91,31          | 261,26                                |
| 599 | 91,47          | 261,36                                |
| 600 | 91,62          | 261,46                                |
| 601 | 91,77          | 261,56                                |
| 602 | 91,93          | 261,67                                |
| 603 | 92,08          | 261,77                                |
| 604 | 92,23          | 261,87                                |
| 605 | 92,38          | 261,98                                |
| 606 | 92,54          | 262,08                                |
| 607 | 92,69          | 262,19                                |
| 608 | 92,84          | 262,3                                 |
| 609 | 93,0           | 262,41                                |
| 610 | 93,15          | 262,52                                |
| 611 | 93,3           | 262,63                                |
| 612 | 93,46          | 262,74                                |
| 613 | 93,40          |                                       |
| 614 | -              | 262,85<br>262,97                      |
|     | 93,76          | · · · · · · · · · · · · · · · · · · · |
| 615 | 93,91          | 263,09                                |
| 617 | 94,07<br>94,22 | 263,2<br>263,32                       |
|     |                | ,                                     |
| 618 | 94,37          | 263,43                                |
| 619 | 94,53          | 263,54                                |
| 620 | 94,68          | 263,62                                |
| 621 | 94,83          | 263,68                                |
| 622 | 94,99          | 263,75                                |
| 623 | 95,14          | 263,8                                 |
| 624 | 95,29          | 263,83                                |
| 625 | 95,44          | 263,87                                |
| 626 | 95,6           | 263,9                                 |
| 627 | 95,75          | 263,91                                |
| 628 | 95,9           | 263,94                                |
| 629 | 96,06          | 263,96                                |

| 630 | 96,21  | 263,97 |
|-----|--------|--------|
| 631 | 96,36  | 263,97 |
| 632 | 96,51  | 263,98 |
| 633 | 96,67  | 263,98 |
| 634 | 96,82  | 263,97 |
| 635 | 96,97  | 263,97 |
| 636 | 97,13  | 263,95 |
| 637 | 97,28  | 263,96 |
| 638 | 97,43  | 263,97 |
| 639 | 97,59  | 264,0  |
| 640 | 97,74  | 264,02 |
| 641 | 97,89  | 264,05 |
| 642 | 98,04  | 264,07 |
| 643 | 98,2   | 264,1  |
| 644 | 98,35  | 264,12 |
| 645 | 98,5   | 264,14 |
| 646 | 98,66  | 264,19 |
| 647 | 98,81  | 264,24 |
| 648 | 98,96  | 264,28 |
| 649 | 99,11  | 264,31 |
| 650 | 99,11  | 264,33 |
| 651 |        | ,      |
|     | 99,42  | 264,35 |
| 652 | 99,57  | 264,38 |
| 653 | 99,73  | 264,41 |
| 654 | 99,88  | 264,44 |
| 655 | 100,03 | 264,47 |
| 656 | 100,19 | 264,5  |
| 657 | 100,34 | 264,53 |
| 658 | 100,49 | 264,55 |
| 659 | 100,64 | 264,57 |
| 660 | 100,8  | 264,59 |
| 661 | 100,95 | 264,62 |
| 662 | 101,1  | 264,64 |
| 663 | 101,26 | 264,66 |
| 664 | 101,41 | 264,68 |
| 665 | 101,56 | 264,7  |
| 666 | 101,72 | 264,73 |
| 667 | 101,87 | 264,79 |
| 668 | 102,02 | 264,86 |
| 669 | 102,17 | 264,94 |
| 670 | 102,33 | 265,01 |
| 671 | 102,48 | 265,08 |
| 672 | 102,63 | 265,13 |
| 673 | 102,79 | 265,18 |
| 674 | 102,94 | 265,21 |
| 675 | 103,09 | 265,24 |
| 676 | 103,24 | 265,29 |
| 677 | 103,4  | 265,35 |
| 678 | 103,55 | 265,42 |
| 679 | 103,7  | 265,49 |
| 680 | 103,86 | 265,54 |
| L   |        | ,      |

| 681 | 104,01 | 265,58 |
|-----|--------|--------|
| 682 | 104,16 | 265,62 |
| 683 | 104,32 | 265,64 |
| 684 | 104,47 | 265,66 |
| 685 | 104,62 | 265,68 |
| 686 | 104,77 | 265,7  |
| 687 | 104,93 | 265,72 |
| 688 | 105,08 | 265,73 |
| 689 | 105,23 | 265,76 |
| 690 | 105,39 | 265,78 |
| 691 | 105,54 | 265,81 |
| 692 | 105,69 | 265,84 |
| 693 | 105,84 | 265,88 |
| 694 | 106,0  | 265,92 |
| 695 | 106,15 | 265,97 |
| 696 | 106,3  | 266,02 |
| 697 | 106,46 | 266,08 |
| 698 | 106,61 | 266,14 |
| 699 | 106,76 | 266,2  |
| 700 | 106,92 | 266,28 |
| 701 | 107,07 | 266,35 |
| 702 | 107,22 | 266,42 |
| 703 | 107,37 | 266,49 |
| 704 | 107,53 | 266,55 |
| 705 | 107,68 | 266,61 |
| 706 | 107,83 | 266,66 |
| 707 | 107,99 | 266,7  |
| 708 | 108,14 | 266,73 |
| 709 | 108,29 | 266,77 |
| 710 | 108,45 | 266,81 |
| 711 | 108,6  | 266,86 |
| 712 | 108,75 | 266,9  |
| 713 | 108,75 | 266,95 |
| 714 | 109,06 | 267,0  |
| 715 | 109,00 | 267,05 |
| 716 | 109,21 | 267,1  |
| 717 | 109,50 | 267,15 |
| 717 | 109,52 | 267,13 |
| 719 | 109,87 | 267,26 |
| 719 | 109,82 | 267,32 |
| 720 | 110,13 |        |
| 721 | 110,13 | 267,38 |
|     | -      | 267,44 |
| 723 | 110,43 | 267,49 |
| 724 | 110,59 | 267,54 |
| 725 | 110,74 | 267,59 |
| 726 | 110,89 | 267,65 |
| 727 | 111,05 | 267,72 |
| 728 | 111,2  | 267,79 |
| 729 | 111,35 | 267,86 |
| 730 | 111,5  | 267,92 |
| 731 | 111,66 | 267,98 |

| 732        | 111,81 | 268,04 |
|------------|--------|--------|
| 733        | 111,96 | 268,09 |
| 734        | 112,12 | 268,14 |
| 735        | 112,27 | 268,19 |
| 736        | 112,42 | 268,24 |
| 737        | 112,58 | 268,29 |
| 738        | 112,73 | 268,34 |
| 739        | 112,88 | 268,4  |
| 740        | 113,03 | 268,46 |
| 741        | 113,19 | 268,54 |
| 742        | 113,34 | 268,62 |
| 743        | 113,49 | 268,71 |
| 744        | 113,65 | 268,8  |
| 745        | 113,8  | 268,89 |
| 746        | 113,95 | 268,98 |
| 747        | 114,1  | 269,06 |
| 748        | 114,26 | 269,15 |
| 749        | 114,41 | 269,23 |
| 750        | 114,56 | 269,3  |
| 751        | 114,72 | 269,37 |
| 752        | 114,87 | 269,44 |
| 753        | 115,02 | 269,5  |
| 754        | 115,18 | 269,57 |
| 755        | 115,33 | 269,68 |
| 756        | 115,48 | 269,8  |
| 757        | 115,63 | 269,91 |
| 758        | 115,79 | 270,02 |
| 759        | 115,94 | 270,12 |
| 760        | 116,09 | 270,12 |
| 761        | 116,25 | 270,3  |
| 762        | 116,4  | 270,38 |
| 763        | 116,55 | 270,46 |
| 764        | 116,7  | 270,53 |
| 765        | 116,86 | 270,6  |
| 766        | 117,01 | 270,67 |
| 767        | 117,16 | 270,74 |
| 768        | 117,10 | 270,74 |
| 769        | 117,47 | 270,87 |
| 770        | 117,47 | 270,95 |
| 770        | 117,78 | 271,03 |
|            | 117,78 |        |
| 772<br>773 |        | 271,1  |
|            | 118,08 | 271,18 |
| 774        | 118,23 | 271,26 |
| 775        | 118,39 | 271,33 |
| 776        | 118,54 | 271,41 |
| 777        | 118,69 | 271,5  |
| 778        | 118,85 | 271,59 |
| 779        | 119,0  | 271,67 |
| 780        | 119,15 | 271,76 |
| 781        | 119,31 | 271,84 |
| 782        | 119,46 | 271,94 |

| 783 | 119,61 | 272,05 |
|-----|--------|--------|
| 784 | 119,76 | 272,15 |
| 785 | 119,92 | 272,24 |
| 786 | 120,07 | 272,33 |
| 787 | 120,22 | 272,41 |
| 788 | 120,38 | 272,48 |
| 789 | 120,53 | 272,55 |
| 790 | 120,68 | 272,61 |
| 791 | 120,83 | 272,67 |
| 792 | 120,99 | 272,73 |
| 793 | 121,14 | 272,8  |
| 794 | 121,29 | 272,89 |
| 795 | 121,45 | 272,97 |
| 796 | 121,6  | 273,06 |
| 797 | 121,75 | 273,15 |
| 798 | 121,91 | 273,24 |
| 799 | 122,06 | 273,32 |
| 800 | 122,21 | 273,4  |
| 801 | 122,36 | 273,48 |
| 802 | 122,52 | 273,56 |
| 803 | 122,67 | 273,65 |
| 804 | 122,82 | 273,76 |
| 805 | 122,98 | 273,86 |
| 806 | 123,13 | 273,96 |
| 807 | 123,28 | 274,07 |
| 808 | 123,43 | 274,17 |
| 809 | 123,59 | 274,29 |
| 810 | 123,74 | 274,42 |
| 811 | 123,89 | 274,55 |
| 812 | 124,05 | 274,67 |
| 813 | 124,2  | 274,77 |
| 814 | 124,35 | 274,88 |
| 815 | 124,51 | 274,97 |
| 816 | 124,66 | 275,05 |
| 817 | 124,81 | 275,13 |
| 818 | 124,96 | 275,21 |
| 819 | 125,12 | 275,29 |
| 820 | 125,27 | 275,38 |
| 821 | 125,42 | 275,48 |
| 822 | 125,58 | 275,58 |
| 823 | 125,73 | 275,68 |
| 824 | 125,88 | 275,77 |
| 825 | 126,04 | 275,85 |
| 826 | 126,19 | 275,94 |
| 827 | 126,34 | 276,03 |
| 828 | 126,49 | 276,12 |
| 829 | 126,65 | 276,22 |
| 830 | 126,8  | 276,31 |
| 831 | 126,95 | 276,39 |
| 832 | 127,11 | 276,47 |
| 833 | 127,26 | 276,55 |
| •   | •      |        |

| 834 | 127,41 | 276,62           |
|-----|--------|------------------|
| 835 | 127,56 | 276,69           |
| 836 | 127,72 | 276,75           |
| 837 | 127,87 | 276,82           |
| 838 | 128,02 | 276,89           |
| 839 | 128,18 | 276,95           |
| 840 | 128,33 | 277,01           |
| 841 | 128,48 | 277,08           |
| 842 | 128,64 | 277,13           |
| 843 | 128,79 | 277,19           |
| 844 | 128,94 | 277,25           |
| 845 | 129,09 | 277,31           |
| 846 | 129,25 | 277,39           |
| 847 | 129,4  | 277,48           |
| 848 | 129,55 | 277,57           |
| 849 | 129,71 | 277,65           |
| 850 | 129,86 | 277,73           |
| 851 | 130,01 | 277,8            |
| 852 | 130,16 | 277,87           |
| 853 | 130,32 |                  |
| 854 | 130,32 | 277,93<br>277,98 |
| 855 |        |                  |
|     | 130,62 | 278,02           |
| 856 | 130,78 | 278,06           |
| 857 | 130,93 | 278,09           |
| 858 | 131,08 | 278,14           |
| 859 | 131,24 | 278,19           |
| 860 | 131,39 | 278,24           |
| 861 | 131,54 | 278,28           |
| 862 | 131,69 | 278,33           |
| 863 | 131,85 | 278,37           |
| 864 | 132,0  | 278,42           |
| 865 | 132,15 | 278,48           |
| 866 | 132,31 | 278,53           |
| 867 | 132,46 | 278,59           |
| 868 | 132,61 | 278,65           |
| 869 | 132,77 | 278,71           |
| 870 | 132,92 | 278,77           |
| 871 | 133,07 | 278,82           |
| 872 | 133,22 | 278,88           |
| 873 | 133,38 | 278,93           |
| 874 | 133,53 | 278,98           |
| 875 | 133,68 | 279,03           |
| 876 | 133,84 | 279,08           |
| 877 | 133,99 | 279,13           |
| 878 | 134,14 | 279,19           |
| 879 | 134,29 | 279,25           |
| 880 | 134,45 | 279,34           |
| 881 | 134,6  | 279,43           |
| 882 | 134,75 | 279,52           |
| 883 | 134,91 | 279,62           |
| 884 | 135,06 | 279,71           |
|     | 122,00 | ,                |

| 885 | 135,21           | 279,79           |
|-----|------------------|------------------|
| 886 | 135,37           | 279,87           |
| 887 | 135,52           | 279,94           |
| 888 | 135,67           | 280,02           |
| 889 | 135,82           | 280,1            |
| 890 | 135,98           | 280,17           |
| 891 | 136,13           | 280,23           |
| 892 | 136,28           | 280,3            |
| 893 | 136,44           | 280,35           |
| 894 | 136,59           | 280,41           |
| 895 | 136,74           | 280,46           |
| 896 | 136,89           | 280,51           |
| 897 | 137,05           | 280,56           |
| 898 | 137,2            | 280,61           |
| 899 | 137,35           | 280,65           |
| 900 | 137,51           | 280,69           |
| 901 | 137,66           | 280,72           |
| 902 | 137,81           | 280,76           |
| 903 | 137,97           | 280,79           |
| 904 | 138,12           | 280,81           |
| 905 | 138,27           | 280,83           |
| 906 | 138,42           | 280,84           |
| 907 | 138,58           | 280,84           |
| 908 | 138,73           | 280,84           |
| 909 | 138,88           | 280,83           |
| 910 | 139,04           | 280,83           |
| 911 | 139,19           | 280,84           |
| 912 | 139,34           | 280,85           |
| 913 | 139,5            | 280,86           |
| 914 | 139,65           | 280,87           |
| 915 | 139,8            | 280,93           |
| 916 | 139,95           | 280,98           |
| 917 | 140,11           | 281,03           |
| 918 | 140,26           | 281,07           |
| 919 | 140,41           | 281,11           |
| 920 | 140,57           | 281,14           |
| 920 | 140,72           | 281,17           |
| 921 | 140,72           | 281,17           |
| 923 | 141,02           | 281,23           |
| 923 | 141,02           | 281,26           |
| 924 |                  |                  |
| 925 | 141,33<br>141,48 | 281,28<br>281,31 |
| 926 | -                | -                |
|     | 141,64<br>141,79 | 281,33           |
| 928 | ,                | 281,36           |
| 929 | 141,94           | 281,38           |
| 930 | 142,1            | 281,41           |
| 931 | 142,25           | 281,43           |
| 932 | 142,4            | 281,45           |
| 933 | 142,55           | 281,48           |
| 934 | 142,71           | 281,5            |
| 935 | 142,86           | 281,52           |

| 936 | 143,01 | 281,54 |
|-----|--------|--------|
| 937 | 143,17 | 281,55 |
| 938 | 143,32 | 281,56 |
| 939 | 143,47 | 281,57 |
| 940 | 143,62 | 281,57 |
| 941 | 143,78 | 281,56 |
| 942 | 143,93 | 281,56 |
| 943 | 144,08 | 281,56 |
| 944 | 144,24 | 281,55 |
| 945 | 144,39 | 281,55 |
| 946 | 144,54 | 281,55 |
| 947 | 144,7  | 281,55 |
| 948 | 144,85 | 281,55 |
| 949 | 145,0  | 281,55 |
| 950 | 145,15 | 281,55 |
| 951 | 145,31 | 281,55 |
| 952 | 145,46 | 281,56 |
| 953 | 145,61 | 281,56 |
| 954 | 145,77 | 281,56 |
| 955 | 145,92 | 281,56 |
| 956 | 146,07 | 281,57 |
| 957 | 146,23 | 281,57 |
| 958 | 146,38 | 281,57 |
| 959 | 146,53 | 281,58 |
| 960 | 146,68 | 281,58 |
| 961 | 146,84 | 281,58 |
| 962 | 146,99 | 281,59 |
| 963 | 147,14 | 281,59 |
| 964 | 147,3  | 281,59 |
| 965 | 147,45 | 281,6  |
| 966 | 147,6  | 281,6  |
| 967 | 147,75 | 281,6  |
| 968 | 147,91 | 281,6  |
| 969 | 148,06 | 281,6  |
| 970 | 148,21 | 281,6  |
| 971 | 148,37 | 281,59 |
| 972 | 148,52 | 281,59 |
| 973 | 148,67 | 281,59 |
| 974 | 148,83 | 281,58 |
| 975 | 148,98 | 281,58 |
| 976 | 149,13 | 281,58 |
| 977 | 149,28 | 281,57 |
| 978 | 149,44 | 281,57 |
| 979 | 149,59 | 281,57 |
| 980 | 149,74 | 281,57 |
| 981 | 149,74 | 281,56 |
| 982 | 150,05 | 281,56 |
| 983 | 150,03 | 281,56 |
| 984 | 150,35 | 281,56 |
| 985 | 150,51 | 281,56 |
| 986 | 150,66 | 281,56 |
| 900 | 130,00 | 201,30 |

| 987  | 150,81 | 281,56 |
|------|--------|--------|
| 988  | 150,97 | 281,56 |
| 989  | 151,12 | 281,56 |
| 990  | 151,27 | 281,56 |
| 991  | 151,43 | 281,56 |
| 992  | 151,58 | 281,56 |
| 993  | 151,73 | 281,57 |
| 994  | 151,88 | 281,57 |
| 995  | 152,04 | 281,57 |
| 996  | 152,19 | 281,57 |
| 997  | 152,34 | 281,57 |
| 998  | 152,5  | 281,57 |
| 999  | 152,65 | 281,58 |
| 1000 | 152,8  | 281,58 |
| 1001 | 152,96 | 281,58 |
| 1002 | 153,11 | 281,59 |
| 1003 | 153,26 | 281,59 |
| 1004 | 153,41 | 281,59 |
| 1005 | 153,57 | 281,6  |
| 1006 | 153,72 | 281,6  |
| 1007 | 153,87 | 281,6  |
| 1008 | 154,03 | 281,61 |
| 1009 | 154,18 | 281,61 |
| 1010 | 154,33 | 281,61 |
| 1011 | 154,48 | 281,62 |
| 1012 | 154,64 | 281,62 |
| 1013 | 154,79 | 281,63 |
| 1014 | 154,94 | 281,63 |
| 1015 | 155,1  | 281,63 |
| 1016 | 155,25 | 281,64 |
| 1017 | 155,4  | 281,64 |
| 1018 | 155,56 | 281,65 |
| 1019 | 155,71 | 281,65 |
| 1020 | 155,86 | 281,66 |
| 1021 | 156,01 | 281,66 |
| 1022 | 156,17 | 281,67 |
| 1023 | 156,32 | 281,67 |
| 1024 | 156,47 | 281,67 |
| 1025 | 156,63 | 281,69 |
|      | •      | •      |

#### Coefficienti parziali per i parametri geotecnici del terreno

| Tangente angolo di resistenza al taglio | 1,0 |
|-----------------------------------------|-----|
| Coesione efficace                       | 1,0 |
| Coesione non drenata                    | 1,0 |
| Riduzione parametri geotecnici terreno  | No  |

=======

## Stratigrafia

c: coesione; cu: coesione non drenata; Fi: Angolo di attrito; G: Peso Specifico; Gs: Peso Specifico Saturo; K: Modulo di Winkler

| Strat | c                 | cu                | Fi  | G       | Gs   | K    | Lito |  |
|-------|-------------------|-------------------|-----|---------|------|------|------|--|
| 0     | (kg/              | (kg/              | (°) | (Kg/    | (Kg/ | (Kg/ | logi |  |
|       | cm <sup>2</sup> ) | cm <sup>2</sup> ) |     | $m^3$ ) |      | cm³) | a    |  |
| 1     | 0,8               |                   | 35  | 170     | 210  | 0,00 |      |  |
|       |                   |                   |     | 0,00    | 0,00 |      |      |  |

#### Risultati analisi pendio

| =====                      |         |
|----------------------------|---------|
| Fs minimo individuato      | 2,62    |
| Ascissa centro superficie  | 120,0 m |
| Ordinata centro superficie | 285,0 m |
| Raggio superficie          | 25,17 m |

\_\_\_\_

B: Larghezza del concio; Alfa: Angolo di inclinazione della base del concio; Li: Lunghezza della base del concio; Wi: Peso del concio; Ui: Forze derivanti dalle pressioni neutre; Ni: forze agenti normalmente alla direzione di scivolamento; Ti: forze agenti parallelamente alla superficie di scivolamento; Fi: Angolo di attrito; c: coesione.

(ID=17) xc = 120,00 yc = 285,00 Rc = 25,174 Fs=2,616

| Nr.  | B<br>m | Alfa<br>(°) | Li<br>m | Wi<br>(Kg) | Kh•Wi<br>(Kg) | Kv•Wi<br>(Kg) | c<br>(kg/cm²) | Fi<br>(°) | Ui N'i<br>(Kg) (Kg) | Ti<br>(Kg) |
|------|--------|-------------|---------|------------|---------------|---------------|---------------|-----------|---------------------|------------|
| 1 0  | 18     | -39,3       | 0,23    | 27,94      | 0,0           | 1,39          | 0,8           | 35,0      | 0,0 22,7            | -17,7      |
| 2 0  | _      | -38,8       | ,       | 67.16      | 0,0           | 3,35          | 0,8           | 35,0      | 0,0 22,7            | -42,0      |
|      | ,15    | -38,3       | ,       | 105,17     | 0,0           | 5,25          | 0,8           | 35,0      | 0,0 86,6            | -65,2      |
|      | ,15    | -37,9       | ,       | 141,37     | 0,0           | 7,05          | 0,8           | 35,0      | 0,0 117,2           | -86,8      |
| 5 0  | ,15    | -37,5       | 0,19    | 176,38     | 0,0           | 8,8           | 0,8           | 35,0      | 0,0 147,0           | -107,3     |
| 6 0  | ,15    | -37,0       | 0,19    | 211,2      | 0,0           | 10,54         | 0,8           | 35,0      | 0,0 177,1           | -127,1     |
| 7 0  | ,15    | -36,6       | 0,19 2  | 245,56     | 0,0           | 12,25         | 0,8           | 35,0      | 0,0 207,1           | -146,3     |
| 8 0  | ,15    | -36,1       | 0,19 2  | 280,37     | 0,0           | 13,99         | 0,8           | 35,0      | 0,0 237,8           | -165,3     |
| 9 0  | ,15    | -35,7       | 0,19 3  | 315,64     | 0,0           | 15,75         | 0,8           | 35,0      | 0,0 269,0           | -184,4     |
| 1039 | 9,55   | 23,3        | 43,071  | 005273,0   | 0,0           | 50163,1       | 0,8           | 35,0      | 0,0969240,          | 6397897,3  |